DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity

被引:233
作者
Sun, Yingli [1 ]
Xu, Ye [1 ]
Roy, Kanaklata [1 ]
Price, Brendan D. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Radiat Oncol, Dana Farber Canc Inst,Div Genom Stabil & DNA Repa, Boston, MA 02115 USA
关键词
D O I
10.1128/MCB.01382-07
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATM's kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at lysine 3016, which is located in the highly conserved C-terminal FATC domain adjacent to the kinase domain. Antibodies specific for acetyl-lysine 3016 demonstrate rapid (within 5 min) in vivo acetylation of ATM following exposure to bleomycin. Furthermore, lysine 3016 of ATM is a substrate in vitro for the Tip60 histone acetyltransferase. Mutation of lysine 3016 does not affect unstimulated ATM kinase activity but does abolish upregulation of ATM's kinase activity by DNA damage, inhibits the conversion of inactive ATM dimers to active ATM monomers, and prevents the ATM-dependent phosphorylation of the p53 and chk2 proteins. These results are consistent with a model in which acetylation of lysine 3016 in the FATC domain of ATM activates the kinase activity of ATM. The acetylation of ATM on lysine 3016 by Tip60 is therefore a key step linking the detection of DNA damage and the activation of ATM kinase activity.
引用
收藏
页码:8502 / 8509
页数:8
相关论文
共 42 条
[1]   Pathophysiology of bone metastases in prostate cancer [J].
Abrahamsson, PA .
EUROPEAN UROLOGY SUPPLEMENTS, 2004, 3 (05) :3-9
[2]   DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J].
Bakkenist, CJ ;
Kastan, MB .
NATURE, 2003, 421 (6922) :499-506
[3]   The C-terminal conserved domain of DNA-PKcs, missing in the SCID mouse, is required for kinase activity [J].
Beamish, HJ ;
Jessberger, R ;
Riballo, E ;
Priestley, A ;
Blunt, T ;
Kysela, B ;
Jeggo, PA .
NUCLEIC ACIDS RESEARCH, 2000, 28 (07) :1506-1513
[4]   Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair [J].
Berkovich, Elijahu ;
Monnat, Raymond J., Jr. ;
Kastan, Michael B. .
NATURE CELL BIOLOGY, 2007, 9 (06) :683-U137
[5]   Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends [J].
Block, WD ;
Yu, YP ;
Merkle, D ;
Gifford, JL ;
Ding, Q ;
Meek, K ;
Lees-Miller, SP .
NUCLEIC ACIDS RESEARCH, 2004, 32 (14) :4351-4357
[6]   FAT: a novel domain in PIK-related kinases [J].
Bosotti, R ;
Isacchi, A ;
Sonnhammer, ELL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (05) :225-227
[7]   The many colours of chromodomains [J].
Brehm, A ;
Tufteland, KR ;
Aasland, R ;
Becker, PB .
BIOESSAYS, 2004, 26 (02) :133-140
[8]   Active role for nibrin in the kinetics of Atm activation [J].
Cerosaletti, K ;
Wright, J ;
Concannon, P .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (05) :1691-1699
[9]   Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks [J].
Chen, BPC ;
Chan, DW ;
Kobayashi, J ;
Burma, S ;
Asaithamby, A ;
Morotomi-Yano, K ;
Botvinick, E ;
Qin, J ;
Chen, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (15) :14709-14715
[10]   The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability [J].
Dames, SA ;
Mulet, JM ;
Rathgeb-Szabo, K ;
Hall, MN ;
Grzesiek, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (21) :20558-20564