Analysis of integral expressions for effective Born radii

被引:47
作者
Mongan, John
Svrcek-Seiler, W. Andreas
Onufriev, Alexey
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[2] Univ Calif San Diego, Ctr Theoret Biol Phys, Med Sci Training Program, Bioinformat Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA
[4] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
关键词
D O I
10.1063/1.2783847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Generalized Born (GB) models provide a computationally efficient means of representing the electrostatic effects of solvent and are widely used, especially in molecular dynamics (MD). Accurate and facile computation of the effective Born radii is a key for the performance of GB models. Here, we examine a simple integral prescription, R6, based on the exact solution of the Poisson-Boltzmann (PB) equation for a perfect sphere. Numerical tests on 22 molecules representing a variety of structural classes show that R6 may be more accurate than the more complex integral-based approaches such as GBMV2. At the same time, R6 is computationally less demanding. Fundamental limitations of current integration-based methods for calculating effective radii, including R6, are explored and the deviations from the numerical PB results are correlated with specific topological and geometrical features of the molecular surface. A small systematic bias observed in the R6-based radii can be removed with a single, transferable constant offset; when the resulting effective radii are used in the "classical" (Still 's) GB formula to compute the electrostatic solvation free energy, the average deviation from the PB reference is no greater than when the "perfect" (PB-based) effective radii are used. This deviation is also appreciably smaller than the uncertainty of the PB reference itself, as estimated by comparison to explicit solvent.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Improving implicit solvent simulations: a Poisson-centric view [J].
Baker, NA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (02) :137-143
[2]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[3]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[4]  
Bashford D, 1997, LECT NOTES COMPUTER, P233, DOI [DOI 10.1007/3-540-63827-X_66, 10.1007/3-540-63827-X]
[5]  
Beroza P, 1998, METHOD ENZYMOL, V295, P170
[6]   Protein molecular dynamics with the generalized Born/ACE solvent model [J].
Calimet, N ;
Schaefer, M ;
Simonson, T .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2001, 45 (02) :144-158
[7]   Implicit solvation models: Equilibria, structure, spectra, and dynamics [J].
Cramer, CJ ;
Truhlar, DG .
CHEMICAL REVIEWS, 1999, 99 (08) :2161-2200
[8]  
David L, 2000, J COMPUT CHEM, V21, P295, DOI 10.1002/(SICI)1096-987X(200003)21:4<295::AID-JCC5>3.0.CO
[9]  
2-8
[10]   Development of a generalized born model parametrization for proteins and nucleic acids [J].
Dominy, BN ;
Brooks, CL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (18) :3765-3773