A preliminary evaluation of a novel method to monitor a triple antioxidant combination (vitamins E, C and α-lipoic acid) in diabetic volunteers using in vitro methaemoglobin formation

被引:10
作者
Coleman, MD [1 ]
Fernandes, S [1 ]
Khanderia, L [1 ]
机构
[1] Aston Univ, Dept Pharmaceut Sci, Mech Drug Tox Grp, Birmingham B4 7ET, W Midlands, England
关键词
methaemoglobin; vitamins C and E; alpha-lipoic acid; dapsone hydroxylamine; human;
D O I
10.1016/S1382-6689(03)00027-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Eight otherwise healthy diabetic volunteers took a daily antioxidant supplement consisting of vitamin E (200 IU), vitamin C (250 mg) and alpha-lipoic acid (90 mg) for a period of 6 weeks. Diabetic dapsone hydroxylamine-mediated methaemoglobin formation and resistance to erythrocytic thiol depletion was compared with age and sex-matched non-diabetic subjects. At time zero, methaemoglobin formation in the non-diabetic subjects was greater at all four time points compared with that of the diabetic subjects. Resistance to glutathione depletion was initially greater in non-diabetic compared with diabetic samples. Half-way through the study (3 weeks), there were no differences between the two groups in methaemoglobin formation and thiol depletion in the diabetic samples was now lower than the non-diabetic samples at 10 and 20 min. At 6 weeks, diabetic erythrocytic thiol levels remained greater than those of non-diabetics. HbA(1c) values were significantly reduced in the diabetic subjects at 6 weeks compared with time zero values. At 10 weeks, 4 weeks after the end of supplementation, the diabetic HbA(1c) values significantly increased to the point where they were not significantly different from the time zero values. Total antioxidant status measurement (TAS) indicated that diabetic plasma antioxidant capacity was significantly improved during antioxidant supplementation. Conversion of,or.-lipoic acid to dihydrolipoic acid (DHLA) in vivo led to potent interference in a standard fructosamine assay kit, negating its use in this study. This report suggests that triple antioxidant therapy in diabetic volunteers attenuates the in vitro experimental oxidative stress of methaemoglobin formation and reduces haemoglobin glycation in vivo. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 36 条
[1]  
ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548
[2]   Role of oxidative stress in diabetic complications - A new perspective on an old paradigm [J].
Baynes, JW ;
Thorpe, SR .
DIABETES, 1999, 48 (01) :1-9
[3]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[4]   The pharmacology of the antioxidant lipoic acid [J].
Biewenga, GP ;
Haenen, GRMM ;
Bast, A .
GENERAL PHARMACOLOGY, 1997, 29 (03) :315-331
[5]   GLYCATION (NONENZYMATIC GLYCOSYLATION) INACTIVATES GLUTATHIONE-REDUCTASE [J].
BLAKYTNY, R ;
HARDING, JJ .
BIOCHEMICAL JOURNAL, 1992, 288 :303-307
[6]   Short term citrus flavonoid supplementation of type II diabetic women: No effect on lipoprotein oxidation tendencies [J].
Blostein-Fujii, A ;
DiSilvestro, RA ;
Frid, D ;
Katz, C .
FREE RADICAL RESEARCH, 1999, 30 (04) :315-320
[7]   α-lipoic acid decreases oxidative stress even in diabetic patients with poor glycemic control and albuminuria [J].
Borcea, V ;
Nourooz-Zadeh, J ;
Wolff, SP ;
Klevesath, M ;
Hofmann, M ;
Urich, H ;
Wahl, P ;
Ziegler, R ;
Tritschler, H ;
Halliwell, B ;
Nawroth, PP .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 26 (11-12) :1495-1500
[8]  
BUNN HF, 1981, SCIENCE, V213, P222, DOI 10.1126/science.12192669
[9]   Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: a pleasant approach to the prevention of cardiovascular disease in diabetes [J].
Ceriello, A ;
Bortolotti, N ;
Motz, E ;
Lizzio, S ;
Catone, B ;
Assaloni, R ;
Tonutti, L ;
Taboga, C .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2001, 31 (04) :322-328
[10]  
COELMAN MD, 2001, BR J DIAB VAS DIS, V1, P88