Reducing mass degeneracy in SAR by MS by stable isotopic labeling

被引:7
作者
Bailey-Kellogg, C
Kelley, JJ
Stein, C
Donald, BR [1 ]
机构
[1] Dartmouth Comp Sci Dept, Sudikoff Lab 6211, Hanover, NH 03755 USA
[2] Dartmouth Chem Dept, Hanover, NH 03755 USA
[3] Dartmouth Ctr Struct Biol & Computat Chem, Hanover, NH 03755 USA
关键词
mass spectrometry; functional genomics; experiment planning; data analysis; methods for biopolymer structure; protein-protein and DNA-protein complexes;
D O I
10.1089/106652701300099056
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry (MS) promises to be an invaluable tool for functional genomics, by supporting low-cost, high-throughput experiments. However, large-scale MS faces the potential problem of mass degeneracy-indistinguishable masses for multiple biopolymer fragments (e,g,, from a limited proteolytic digest). This paper studies the tasks of planning and interpreting MS experiments that use selective isotopic labeling, thereby substantially reducing potential mass degeneracy. Our algorithms support an experimental-computational protocol called structure-activity relation by mass spectrometry (SAR by MS) for elucidating the function of protein-DNA and protein-protein complexes. SAR by MS enzymatically cleaves a crosslinked complex and analyzes the resulting mass spectrum for mass peaks of hypothesized fragments. Depending on binding mode, some cleavage sites will be shielded; the absence of anticipated peaks implicates corresponding fragments as either part of the interaction region or inaccessible due to conformational change upon binding. Thus, different mass spectra provide evidence for different structure-activity relations. We address combinatorial and algorithmic questions in the areas of data analysis (constraining binding mode based on mass signature) and experiment planning (determining an isotopic labeling strategy to reduce mass degeneracy and aid data analysis). We explore the computational complexity of these problems, obtaining upper and lower bounds. We report experimental results from implementations of our algorithms.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 34 条
[1]   THE COMPLEXITY AND APPROXIMABILITY OF FINDING MAXIMUM FEASIBLE SUBSYSTEMS OF LINEAR RELATIONS [J].
AMALDI, E ;
KANN, V .
THEORETICAL COMPUTER SCIENCE, 1995, 147 (1-2) :181-210
[2]   On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems [J].
Amaldi, E ;
Kann, V .
THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) :237-260
[3]   The hardness of approximate optima in lattices, codes, and systems of linear equations [J].
Arora, S ;
Babai, L ;
Stern, J ;
Sweedyk, Z .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 54 (02) :317-331
[4]  
Arora S., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P2, DOI 10.1109/SFCS.1992.267824
[5]  
ARORA S, 1992, P IEEE FOCS, P12
[6]  
Ausiello G, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[7]   The NOESY JIGSAW: Automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data [J].
Bailey-Kellogg, C ;
Widge, A ;
Kelley, JJ ;
Berardi, MJ ;
Bushweller, JH ;
Donald, BR .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :537-558
[8]  
BAILEYKELLOGG C, 2000, 4 INT C COMP MOL BIO, P33
[9]  
BANTSCHEFF M, 1999, BIOCHEM, V3584, P11012
[10]   MULTIDIMENSIONAL DIVIDE-AND-CONQUER [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1980, 23 (04) :214-229