Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers

被引:202
作者
Radisic, M
Deen, W
Langer, R
Vunjak-Novakovic, G
机构
[1] Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Harvard Univ, MIT, Dept Chem Engn, Cambridge, MA 02139 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2005年 / 288卷 / 03期
关键词
tissue engineering; cardiac myocyte; scaffold mass transport; perfluorocarbons;
D O I
10.1152/ajpheart.00787.2004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 288: H1278-H1289, 2005. First published November 11, 2004; doi:10.1152/ajpheart.00787.2004.-A steady-state model of oxygen distribution in a cardiac tissue construct with a parallel channel array was developed and solved for a set of parameters using the finite element method and commercial software (FEMLAB). The effects of an oxygen carrier [Oxygent; 32% volume perfluorocarbon (PFC) emulsion] were evaluated. The parallel channel array mimics the in vivo capillary tissue bed, and the PFC emulsion has a similar role as the natural oxygen carrier hemoglobin in increasing total oxygen content. The construct was divided into an array of cylindrical domains with a channel in the center and tissue space surrounding the channel. In the channel, the main modes of mass transfer were axial convection and radial diffusion. In the tissue region, mass transfer was by axial and radial diffusion, and the consumption of oxygen was by Michaelis-Menten kinetics. Neumann boundary conditions were imposed at the channel centerline and the half distance between the domains. Supplementation of culture medium by PFC emulsion improved mass transport by increasing convective term and effective diffusivity of culture medium. The model was first implemented for the following set of experimentally obtained parameters: construct thickness of 0.2 cm, channel diameter of 330 mum, channel center-to-center spacing of 700 mum, and average linear velocity per channel of 0.049 cm/s, in conjunction with PFC supplemented and unsupplemented culture medium. Subsequently, the model was used to define favorable scaffold geometry and flow conditions necessary to cultivate cardiac constructs of high cell density (10(8) cells/ml) and clinically relevant thickness (0.5 cm). In future work, the model can be utilized as a tool for optimization of scaffold geometry and flow conditions.
引用
收藏
页码:H1278 / H1289
页数:12
相关论文
共 35 条
[1]   Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteloblasts in a dose-dependent manner [J].
Bancroft, GN ;
Sikavitsast, VI ;
van den Dolder, J ;
Sheffield, TL ;
Ambrose, CG ;
Jansen, JA ;
Mikos, AG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12600-12605
[2]   Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies [J].
Bursac, N ;
Papadaki, M ;
Cohen, RJ ;
Schoen, FJ ;
Eisenberg, SR ;
Carrier, R ;
Vunjak-Novakovic, G ;
Freed, LE .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 277 (02) :H433-H444
[3]  
Carrier RL, 1999, BIOTECHNOL BIOENG, V64, P580, DOI 10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO
[4]  
2-X
[5]   Perfusion improves tissue architecture of engineered cardiac muscle [J].
Carrier, RL ;
Rupnick, M ;
Langer, R ;
Schoen, FJ ;
Freed, LE ;
Vunjak-Novakovic, G .
TISSUE ENGINEERING, 2002, 8 (02) :175-188
[6]   Effects of oxygen on engineered cardiac muscle [J].
Carrier, RL ;
Rupnick, M ;
Langer, R ;
Schoen, FJ ;
Freed, LE ;
Vunjak-Novakovic, G .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 78 (06) :617-625
[7]   Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro [J].
Cartmell, SH ;
Porter, BD ;
García, AJ ;
Guldberg, RE .
TISSUE ENGINEERING, 2003, 9 (06) :1197-1203
[8]  
Casey TM, 2000, CIRCULATION, V102, P3124
[9]  
Chromiak JA, 1998, IN VITRO CELL DEV-AN, V34, P694
[10]   Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures [J].
Davisson, T ;
Sah, RL ;
Ratcliffe, A .
TISSUE ENGINEERING, 2002, 8 (05) :807-816