Field effect transport measurements on single grains of sexithiophene: Role of the contacts

被引:74
作者
Chwang, AB [1 ]
Frisbie, CD [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/jp002782o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a study of the contact properties of field effect transistors (FETs) based on single grains of the organic semiconductor sexithiophene ('6T', E-gap similar to 2.3 eV). The FETs are constructed by vapor deposition of isolated 6T grains 2-15 nm thick and 1-3 mum wide into <500 nm gaps between Au wires pre-patterned on SiO2/Si substrates. The Au wires serve as source and drain contacts to the grain and the doped Si substrate serves as the gate electrode. We show from the contact area dependence of the drain current-drain voltage characteristics that the FETs are contact limited. Both the source/6T and drain/6T interfaces can be considered to be Schottky contacts and, consequently, the device can be modeled as a pair of back-to-back diodes. Current is limited by the reverse-biased, hole injecting source/6T contact where the mechanism of hole injection from the metal to the semiconductor is best described by a drift/diffusion process with a field-dependent mobility. The contact resistance of the source/6T interface can be as high as <similar to>1 G Omega, or similar to 10(5) Omega -cm normalized for contact width, and is gate and drain voltage dependent. Greater contact resistances result when the Au electrodes are modified with self-assembled monolayers of dodecanethiol or when Cr is used instead of Au, resulting in dramatically inhibited charge transport.
引用
收藏
页码:12202 / 12209
页数:8
相关论文
共 37 条
[1]   TIME-RESOLVED SPACE CHARGE-LIMITED INJECTION IN A TRAP-FREE GLASSY POLYMER [J].
ABKOWITZ, M ;
FACCI, JS ;
STOLKA, M .
CHEMICAL PHYSICS, 1993, 177 (03) :783-792
[2]  
ANDRES RP, 1998, HDB NANOSTRUCTURED M
[3]   MODELING ORGANIC-SURFACES WITH SELF-ASSEMBLED MONOLAYERS [J].
BAIN, CD ;
WHITESIDES, GM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1989, 28 (04) :506-512
[4]   Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers [J].
Campbell, IH ;
Rubin, S ;
Zawodzinski, TA ;
Kress, JD ;
Martin, RL ;
Smith, DL ;
Barashkov, NN ;
Ferraris, JP .
PHYSICAL REVIEW B, 1996, 54 (20) :14321-14324
[5]   Controlling charge injection in organic electronic devices using self-assembled monolayers [J].
Campbell, IH ;
Kress, JD ;
Martin, RL ;
Smith, DL ;
Barashkov, NN ;
Ferraris, JP .
APPLIED PHYSICS LETTERS, 1997, 71 (24) :3528-3530
[6]  
Chwang AB, 2000, ADV MATER, V12, P285, DOI 10.1002/(SICI)1521-4095(200002)12:4<285::AID-ADMA285>3.0.CO
[7]  
2-D
[8]   Large-scale complementary integrated circuits based on organic transistors [J].
Crone, B ;
Dodabalapur, A ;
Lin, YY ;
Filas, RW ;
Bao, Z ;
LaDuca, A ;
Sarpeshkar, R ;
Katz, HE ;
Li, W .
NATURE, 2000, 403 (6769) :521-523
[9]   Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators [J].
Dimitrakopoulos, CD ;
Purushothaman, S ;
Kymissis, J ;
Callegari, A ;
Shaw, JM .
SCIENCE, 1999, 283 (5403) :822-824
[10]   ORGANIC TRANSISTORS - 2-DIMENSIONAL TRANSPORT AND IMPROVED ELECTRICAL CHARACTERISTICS [J].
DODABALAPUR, A ;
TORSI, L ;
KATZ, HE .
SCIENCE, 1995, 268 (5208) :270-271