Coupled normal heat and matter transport in a simple model system

被引:77
作者
Mejía-Monasterio, C [1 ]
Larralde, H [1 ]
Leyvraz, F [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62191, Morelos, Mexico
关键词
D O I
10.1103/PhysRevLett.86.5417
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the first simple mechanical system that shows fully realistic transport behavior while still being exactly solvable at the level of equilibrium statistical mechanics. The system is a Lorentz gas with fixed freely rotating circular scatterers which scatter point particles via perfectly rough collisions. Upon imposing either a temperature gradient and/or a chemical potential gradient, a stationary state is attained for which local thermal equilibrium holds. Transport in this system is normal in the sense that the transport coefficients which characterize the flow of heal and matter are finite in the thermodynamic limit. Moreover, the two hows are nontrivially coupled, satisfying Onsager's reciprocity relations.
引用
收藏
页码:5417 / 5420
页数:4
相关论文
共 20 条
[1]   Heat conductivity and dynamical instability [J].
Alonso, D ;
Artuso, R ;
Casati, G ;
Guarneri, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (09) :1859-1862
[2]  
[Anonymous], 1999, AM J PHYS, DOI DOI 10.1119/1.19118
[3]  
BONETTO F, MATHPH0002052
[4]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[5]   MARKOV PARTITIONS FOR DISPERSED BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) :247-280
[6]   ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY [J].
CASATI, G ;
FORD, J ;
VIVALDI, F ;
VISSCHER, WM .
PHYSICAL REVIEW LETTERS, 1984, 52 (21) :1861-1864
[7]   STEADY-STATE ELECTRICAL-CONDUCTION IN THE PERIODIC LORENTZ GAS [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :569-601
[8]  
De Groot S. R., 1984, NONEQUILIBRIUM THERM
[9]   Absence of local thermal equilibrium in two models of heat conduction [J].
Dhar, A ;
Dhar, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (03) :480-483
[10]   CHAOTIC SCATTERING-THEORY OF TRANSPORT AND REACTION-RATE COEFFICIENTS [J].
DORFMAN, JR ;
GASPARD, P .
PHYSICAL REVIEW E, 1995, 51 (01) :28-35