Synthesis of hydrophilic polymer-grafted ultrafine inorganic oxide particles in protic media at ambient temperature via atom transfer radical polymerization: use of an electrostatically adsorbed polyelectrolytic macroinitiator

被引:96
作者
Chen, XY [1 ]
Armes, SP [1 ]
Greaves, SJ [1 ]
Watts, JF [1 ]
机构
[1] Univ Sussex, Sch Life Sci, Dept Chem, Brighton BN1 9QJ, E Sussex, England
关键词
D O I
10.1021/la0353024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new approach for the surface grafting of polymer chains to colloidal substrates is described. A cationic macroinitiator has been designed for the surface polymerization of a wide range of hydrophilic methacrylates from ultrafine inorganic oxide sols by atom transfer radical polymerization in protic media at ambient temperature. One advantage of this approach is that it allows one-pot syntheses: the macroinitiator is adsorbed onto the sol, followed by an in situ polymerization. Nonionic, cationic, and betaine monomers can be polymerized directly by this protocol, with reasonably high conversions being obtained, as judged by H-1 NMR spectroscopy. Anionic monomers such as sodium 4-styrenesulfonate cannot be polymerized directly due to incompatibility problems with the cationic macroinitiator-coated sol. However, hydroxylated monomers such as glycerol monomethacrylate can be surface-polymerized and then converted to anionic polyelectrolytes by reaction with succinic anhydride under mild conditions. This derivatization was confirmed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic analysis. Thermogravimetry was used to assess the degree of polymer grafting. Higher target degrees of polymerization led to increased grafted polymer loadings, as expected. Particle morphologies and relative degrees of dispersion in aqueous solution were assessed by transmission electron microscopy and dynamic light scattering, respectively. Surface characterization of the polymer-grafted sols was achieved by X-ray photoelectron spectroscopy and aqueous electrophoresis measurements. Most of the data reported in this study concern surface polymerizations from ultrafine silica sols, but some preliminary data for ultrafine tin(IV) oxide sols are also presented. Since most surfaces are negatively charged, this cationic macroinitiator approach can, in principle, be extended to include a wide range of sols, latexes, and planar substrates without requiring a separate surface functionalization step.
引用
收藏
页码:587 / 595
页数:9
相关论文
共 48 条
[1]   Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization [J].
Blomberg, S ;
Ostberg, S ;
Harth, E ;
Bosman, AW ;
Van Horn, B ;
Hawker, CJ .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (09) :1309-1320
[2]   ATRP grafting from silica surface to create first and second generation of grafts [J].
Böttcher, H ;
Hallensleben, ML ;
Nuss, S ;
Wurm, H .
POLYMER BULLETIN, 2000, 44 (02) :223-229
[3]   Synthesis, characterization, and properties of ABA type triblock copolymer brushes of styrene and methyl acrylate prepared by atom transfer radical polymerization [J].
Boyes, SG ;
Brittain, WJ ;
Weng, X ;
Cheng, SZD .
MACROMOLECULES, 2002, 35 (13) :4960-4967
[4]   Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers [J].
Bütün, V ;
Armes, SP ;
Billingham, NC .
POLYMER, 2001, 42 (14) :5993-6008
[5]   Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles [J].
Carrot, G ;
Diamanti, S ;
Manuszak, M ;
Charleux, B ;
Vairon, IP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (24) :4294-4301
[6]   Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids [J].
Caruso, F ;
Möhwald, H .
LANGMUIR, 1999, 15 (23) :8276-8281
[7]   Surface polymerization of hydrophilic methacrylates from ultrafine silica sols in protic media at ambient temperature: A novel approach to surface functionalization using a polyelectrolytic macroinitiator [J].
Chen, XY ;
Armes, SP .
ADVANCED MATERIALS, 2003, 15 (18) :1558-+
[8]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[9]   Grafting of polymers from clay nanoparticles via in situ free radical surface-initiated polymerization: Monocationic versus bicationic initiators [J].
Fan, XW ;
Xia, CJ ;
Advincula, RC .
LANGMUIR, 2003, 19 (10) :4381-4389
[10]  
Farmer SC, 2001, CHEM MATER, V13, P3920, DOI [10.1021/cm010291q, 10.1021/cm01029lq]