Enhancers of iron absorption: Ascorbic acid and other organic acids

被引:249
作者
Teucher, B
Olivares, M
Cori, H
机构
[1] Inst Food Res, Inst Food Res, Div Nutr, Norwich NR4 7UA, Norfolk, England
[2] Univ Chile, Inst Nutr & Food Technol, Santiago, Chile
[3] DSM Nutr Prod, Micronutr Intervent Programs Task Force Kaiseraug, Santiago, Chile
关键词
iron; food fortification; absorption; ascorbic acid; organic acids; iron status;
D O I
10.1024/0300-9831.74.6.403
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Ascorbic acid (AA), with its reducing and chelating properties, is the most efficient enhancer of nonheme iron absorption when its stability in the food vehicle is ensured. The number of studies investigating the effect of AA on ferrous sulfate absorption far outweighs that of other iron fortificants. The promotion of iron absorption in the presence of AA is more pronounced in meals containing inhibitors of iron absorption. Meals containing low to medium levels of inhibitors require the addition of AA at a molar ratio of 2:1 (e.g., 20 mg AA: 3 mg iron). To promote absorption in the presence of high levels of inhibitors, AA needs to be added at a molar ratio in excess of 4: 1, which may be impractical. The effectiveness of AA in promoting absorption from less soluble compounds, such as ferrous fumarate and elemental iron, requires further investigation. The instability of AA during food processing, storage, and cooking, and the possibility of unwanted sensory changes limits the number of suitable food vehicles for AA, whether used as vitamin fortificant or as an iron enhancer. Suitable vehicles include dry-blended foods, such as complementary, precooked cereal-based infant foods, powdered milk, and other dry beverage products made for reconstitution that are packaged, stored, and prepared in a way that maximizes retention of this vitamin. The consumption of natural sources of Vitamin C (fruits and vegetables) with iron-fortified dry blended foods is also recommended. Encapsulation can mitigate some of the AA losses during processing and storage, but these interventions will also add cost. In addition, the bioavailability of encapsulated iron in the presence/absence of AA will need careful assessment in human clinical trials. The long-term effect of high AA intake on iron status may be less than predicted from single meal studies. The hypothesis that an overall increase of dietary AA intake, or fortification of some foods commonly consumed with the main meal with AA alone, may be as effective as the fortification of the same food vehicle with AA and iron, merits further investigation. This must involve the consideration of practicalities of implementation. To date, programs based on iron and AA fortification of infant formulas and cow's milk provide the strongest evidence for the efficacy of AA fortification. Present results suggest that the effect of organic acids, as measured by in vitro and in vivo methods, is dependent on the source of iron, the type and concentration of organic acid, pH, processing methods, and the food matrix. The iron absorption-enhancing effect of AA is more potent than that of other organic acids due to its ability to reduce ferric to ferrous iron. Based on the limited data available, other organic acids may only be effective at ratios of acid to iron in excess of 100 molar. This would translate into the minimum presence/addition of I g citric acid to a meal containing 3 mg iron. Further characterization of the effectiveness of various organic acids in promoting iron absorption is required, in particular with respect to the optimal molar ratio of organic acid to iron, and associated feasibility for food application purposes. The suggested amount of any organic acid required to produce a nutritional benefit will result in unwanted organoleptic changes in most foods, thus limiting its application to a small number of food vehicles (e.g., condiments, beverages). However, fermented foods that already contain high levels of organic acid may be suitable iron fortification vehicles.
引用
收藏
页码:403 / 419
页数:17
相关论文
共 119 条
[1]  
ABDELKADER ZM, 1991, NAHRUNG, V35, P321, DOI 10.1002/food.19910350314
[2]   Dietary pattern, nutrient intake and growth of adolescent school girls in urban Bangladesh [J].
Ahmed, Faruk ;
Zareen, Momtaz ;
Khan, Moududur Rahman ;
Banu, Cadi Pervin ;
Haq, Mohammed Nazmul ;
Jackson, Alan A. .
PUBLIC HEALTH NUTRITION, 1998, 1 (02) :83-92
[3]   Ascorbic acid enhances hydroxyl radical formation in iron-fortified infant cereals and infant formulas [J].
Almaas, R ;
Rootwelt, T ;
Oyasaeter, S ;
Saugstad, OD .
EUROPEAN JOURNAL OF PEDIATRICS, 1997, 156 (06) :488-492
[4]   Diet and iron status of nonpregnant women in rural Central Mexico [J].
Backstrand, JR ;
Allen, LH ;
Black, AK ;
de Mata, M ;
Pelto, GH .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2002, 76 (01) :156-164
[5]   THE EFFECTS OF FRUIT JUICES AND FRUITS ON THE ABSORPTION OF IRON FROM A RICE MEAL [J].
BALLOT, D ;
BAYNES, RD ;
BOTHWELL, TH ;
GILLOOLY, M ;
MACFARLANE, BJ ;
MACPHAIL, AP ;
LYONS, G ;
DERMAN, DP ;
BEZWODA, WR ;
TORRANCE, JD ;
BOTHWELL, JE ;
MAYET, F .
BRITISH JOURNAL OF NUTRITION, 1987, 57 (03) :331-343
[6]  
Bauernfeind J C, 1985, Int J Vitam Nutr Res Suppl, V27, P307
[7]  
BAUERNFEIND JC, 1991, NUTR ADDITIONS FOOD, V5, P143
[8]  
BAYNES RD, 1990, EUR J CLIN NUTR, V44, P419
[9]  
BELITZ HD, 1999, FOOD CHEM, P417
[10]   ASCORBIC-ACID SAFETY - ANALYSIS OF FACTORS AFFECTING IRON-ABSORPTION [J].
BENDICH, A ;
COHEN, M .
TOXICOLOGY LETTERS, 1990, 51 (02) :189-201