Thermal conduction of carbon nanotubes using molecular dynamics

被引:135
作者
Yao, ZH [1 ]
Wang, JS
Li, BW
Liu, GR
机构
[1] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117576, Singapore
[2] Natl Univ Singapore, Dept Computat Sci, Singapore 117543, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Natl Univ Singapore, Dept Mech Engn, Singapore 119260, Singapore
关键词
D O I
10.1103/PhysRevB.71.085417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The heat flux autocorrelation functions of carbon nanotubes (CNT's) with different radii and lengths are calculated using equilibrium molecular dynamics with periodic boundary conditions. The thermal conductance of CNT's is also calculated using the Green-Kubo formula from linear response theory. By pointing out an ambiguity in the cross-section definition of single-wall CNT's, we refer to the thermal conductance instead of conductivity in calculations and discussions. We find that the thermal conductance of CNT's diverges with the length of CNT's. After an analysis of vibrational density of states, it is shown that there are more and stronger low-frequency vibrational modes in longer CNT's, and these modes effectively contribute to the divergence of thermal conductance.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[2]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[3]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[4]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[5]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[6]   One-dimensional heat conductivity exponent from a random collision model [J].
Deutsch, JM ;
Narayan, O .
PHYSICAL REVIEW E, 2003, 68 (01) :3-102013
[7]   Correlations and scaling in one-dimensional heat conduction [J].
Deutsch, JM ;
Narayan, O .
PHYSICAL REVIEW E, 2003, 68 (04)
[8]   PHYSICS OF CARBON NANOTUBES [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G ;
SAITO, R .
CARBON, 1995, 33 (07) :883-891
[9]   Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory [J].
Gonze, X ;
Lee, C .
PHYSICAL REVIEW B, 1997, 55 (16) :10355-10368
[10]   First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. [J].
Gonze, X .
PHYSICAL REVIEW B, 1997, 55 (16) :10337-10354