Invariant integration over the unitary group

被引:28
作者
Aubert, S [1 ]
Lam, CS [1 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
关键词
D O I
10.1063/1.1622448
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Integrals for the product of unitary-matrix elements over the U(n) group will be discussed. A group-theoretical formula is available to convert them into a multiple sum, but unfortunately the sums are often tedious to compute. In this article, we develop an alternative method in which these sums are avoided, and group theory is rendered unnecessary. Only unitarity and the invariance of the Haar measure are required for the computation. The method can also be used to get a closed expression for the simpler integral of monomials over a hypersphere. (C) 2003 American Institute of Physics.
引用
收藏
页码:6112 / 6131
页数:20
相关论文
共 17 条
[1]   Character expansions, Itzykson-Zuber integrals, and the QCD partition function [J].
Balantekin, AB .
PHYSICAL REVIEW D, 2000, 62 (08) :1-8
[2]   U(N) INTEGRAL FOR THE GENERATING FUNCTIONAL IN LATTICE GAUGE-THEORY [J].
BARS, I .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (11) :2678-2681
[3]  
Bars I., 1981, Physica Scripta, V23, P983, DOI 10.1088/0031-8949/23/5B/014
[4]  
COLLINS B, MATHPH0205010
[5]   INVARIANT INTEGRATION OVER SU(N) [J].
CREUTZ, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2043-2046
[6]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[7]  
Guhr T, 1998, PHYS REP, V299, P190
[8]   PLANAR APPROXIMATION .2. [J].
ITZYKSON, C ;
ZUBER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :411-421
[9]   Saturation and Wilson line distribution [J].
Lam, CS ;
Mahlon, G ;
Zhu, W .
PHYSICAL REVIEW D, 2002, 66 (07)
[10]   ON THE LARGE-N LIMIT OF THE ITZYKSON-ZUBER INTEGRAL [J].
MATYTSIN, A .
NUCLEAR PHYSICS B, 1994, 411 (2-3) :805-820