Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species

被引:166
作者
Mukhopadhyay, P
Zheng, M
Bedzyk, LA
LaRossa, RA
Storz, G [1 ]
机构
[1] NICHHD, Cell Biol & Metab Branch, NIH, Bethesda, MD 20892 USA
[2] DuPont Co Inc, Cent Res & Dev, Wilmington, DE 19880 USA
关键词
D O I
10.1073/pnas.0307741100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We examined the genomewide transcriptional responses of Escherichia coli treated with nitrosylated glutathione or the nitric oxide (NO)-generator acidified sodium nitrite (NaNO2) during aerobic growth. These assays showed that NorR, a homolog of NO-responsive transcription factors in Ralstonia eutrophus, and Fur, the global repressor of ferric ion uptake, are major regulators of the response to reactive nitrogen species. In contrast, SoxR and OxyR, regulators of the E. coli defenses against superoxide-generating compounds and hydrogen peroxide, respectively, have minor roles. Moreover, additional regulators of the E. coli response to reactive nitrogen species remain to be identified because several of the induced genes were regulated normally in norR, fur, soxRS, and oxyR mutant strains. We propose that the E. coli transcriptional response to reactive nitrogen species is a composite response mediated by the modification of multiple transcription factors containing iron or redox-active cysteines, some specifically designed to sense NO and its derivatives and others that are collaterally activated by the reactive nitrogen species.
引用
收藏
页码:745 / 750
页数:6
相关论文
共 51 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]   Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli [J].
Atkinson, MR ;
Savageau, MA ;
Myers, JT ;
Ninfa, AJ .
CELL, 2003, 113 (05) :597-607
[3]   Peroxynitrite reductase activity of bacterial peroxiredoxins [J].
Bryk, R ;
Griffin, P ;
Nathan, C .
NATURE, 2000, 407 (6801) :211-215
[4]   Structural basis of the redox switch in the OxyR transcription factor [J].
Choi, HJ ;
Kim, SJ ;
Mukhopadhyay, P ;
Cho, S ;
Woo, JR ;
Storz, G ;
Ryu, SE .
CELL, 2001, 105 (01) :103-113
[5]   Role for the Salmonella flavohemoglobin in protection from nitric oxide [J].
Crawford, MJ ;
Goldberg, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (20) :12543-12547
[6]   Regulation of the Salmonella typhimurium flavohemoglobin gene -: A new pathway for bacterial gene expression in response to nitric oxide [J].
Crawford, MJ ;
Goldberg, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (51) :34028-34032
[7]   NO sensing by FNR:: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp [J].
Cruz-Ramos, H ;
Crack, J ;
Wu, GG ;
Hughes, MN ;
Scott, C ;
Thomson, AJ ;
Green, J ;
Poole, RK .
EMBO JOURNAL, 2002, 21 (13) :3235-3244
[8]   Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron [J].
D'Autréaux, B ;
Touati, D ;
Bersch, B ;
Latour, JM ;
Michaud-Soret, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16619-16624
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium [J].
DeGroote, MA ;
Testerman, T ;
Xu, YS ;
Stauffer, G ;
Fang, FC .
SCIENCE, 1996, 272 (5260) :414-417