Wang-Landau estimation of magnetic properties for the Heisenberg model

被引:26
作者
Brown, G
Schulthess, TC
机构
[1] Oak Ridge Natl Lab, Ctr Computat Sci, Oak Ridge, TN 37831 USA
[2] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA
[3] Oak Ridge Natl Lab, Ctr Computat Sci, Oak Ridge, TN 37831 USA
关键词
D O I
10.1063/1.1847311
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Wang-Landau method is a Monte Carlo procedure for estimating the equilibrium density of states g(E) of spin models, which can then be used to rapidly calculate properties such as the free energy and specific heat as functions of temperature. Here, the Wang-Landau method is validated for the Heisenberg model by comparison with the traditional Monte Carlo estimates, and a procedure for estimating the minimum temperature for valid results is presented. In addition, we show that the Wang-Landau method can be extended to calculate zero-field magnetic properties such as the zero-field susceptibility. (c) 2005 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 7 条
  • [1] NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS
    FERRENBERG, AM
    SWENDSEN, RH
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (23) : 2635 - 2638
  • [2] Kalos M. H., 1986, MONTE CARLO METHODS
  • [3] Landau D.P., 2015, A Guide to Monte Carlo Simulations in Statistical Physics, Vfourth
  • [4] Application of the projected dynamics method to an anisotropic Heisenberg model
    Mitchell, SJ
    Novotny, MA
    Muñoz, JD
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (08): : 1503 - 1512
  • [5] REWEIGHTING IN MONTE-CARLO AND MONTE-CARLO RENORMALIZATION-GROUP STUDIES
    MUNGER, EP
    NOVOTNY, MA
    [J]. PHYSICAL REVIEW B, 1991, 43 (07): : 5773 - 5783
  • [6] Generalization of the Wang-Landau method for off-lattice simulations
    Shell, MS
    Debenedetti, PG
    Panagiotopoulos, AZ
    [J]. PHYSICAL REVIEW E, 2002, 66 (05) : 9
  • [7] Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
    Wang, FG
    Landau, DP
    [J]. PHYSICAL REVIEW E, 2001, 64 (05): : 16