Effects of C-H stretch excitation on the H+CH4 reaction -: art. no. 134301

被引:68
作者
Camden, JP [1 ]
Bechtel, HA [1 ]
Brown, DJA [1 ]
Zare, RN [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
D O I
10.1063/1.2034507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have investigated the effects of C-H stretching excitation on the H+CH4 -> CH3+H-2 reaction dynamics using the photo-LOC technique. The CH3 product vibrational state and angular distribution are measured for the reaction of fast H atoms with methane excited in either the antisymmetric stretching fundamental (nu(3)=1) or first overtone (nu(3)=2) with a center-of-mass collision energy of E-coll ranging from 1.52 to 2.20 eV. We find that vibrational excitation of the nu(3)=1 mode enhances the overall reaction cross section by a factor of 3.0 +/- 1.5 for E-coll=1.52 eV, and this enhancement factor is approximately constant over the 1.52-2.20-eV collision energy range. A local-mode description of the CH4 stretching vibration, in which the C-H oscillators are uncoupled, is used to describe the observed state distributions. In this model, the interaction of the incident H atom with either a stretched or an unstretched C-H oscillator determines the vibrational state of the CH3 product. We also compare these results to the similar quantities obtained previously for the Cl+CH4 -> CH3+HCl reaction at E-coll=0.16 eV [Z. H. Kim, H. A. Bechtel, and R. N. Zare, J. Chem. Phys. 117, 3232 (2002); H. A. Bechtel, J. P. Camden, D. J. A. Brown, and R. N. Zare, ibid. 120, 5096 (2004)] in an attempt to elucidate the differences in reactivity for the same initially prepared vibration. (c) 2005 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 69 条
[1]   Quantum scattering calculations on chemical reactions [J].
Althorpe, SC ;
Clary, DC .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2003, 54 :493-529
[2]  
[Anonymous], 1945, INFRARED RAMAN SPECT
[3]   EVALUATED KINETIC DATA FOR COMBUSTION MODELING [J].
BAULCH, DL ;
COBOS, CJ ;
COX, RA ;
ESSER, C ;
FRANK, P ;
JUST, T ;
KERR, JA ;
PILLING, MJ ;
TROE, J ;
WALKER, RW ;
WARNATZ, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1992, 21 (03) :411-734
[4]   Effects of bending excitation on the reaction of chlorine atoms with methane [J].
Bechtel, HA ;
Camden, JP ;
Brown, DJA ;
Martin, MR ;
Zare, RN ;
Vodopyanov, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (16) :2382-2385
[5]   Correlated energy disposal and scattering dynamics of the Cl+CD4( v3=2) reaction [J].
Bechtel, HA ;
Kim, ZH ;
Camden, JP ;
Zare, RN .
MOLECULAR PHYSICS, 2005, 103 (13) :1837-1846
[6]   Comparing the dynamical effects of symmetric and antisymmetric stretch excitation of methane in the Cl+CH4 reaction [J].
Bechtel, HA ;
Camden, JP ;
Brown, DJA ;
Zare, RN .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (11) :5096-5103
[7]   Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2 [J].
Bechtel, HA ;
Kim, ZH ;
Camden, JP ;
Zare, RN .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (02) :791-799
[8]   Vibrational mode-specific reaction of methane on a nickel surface [J].
Beck, RD ;
Maroni, P ;
Papageorgopoulos, DC ;
Dang, TT ;
Schmid, MP ;
Rizzo, TR .
SCIENCE, 2003, 302 (5642) :98-100
[9]   ROTATIONAL STRUCTURE AND PREDISSOCIATION DYNAMICS OF THE METHYL 4PZ(V=O) RYDBERG STATE INVESTIGATED BY RESONANCE ENHANCED MULTIPHOTON IONIZATION SPECTROSCOPY [J].
BLACK, JF ;
POWIS, I .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (07) :3986-3992
[10]   Overview of reduced dimensionality quantum approaches to reactive scattering [J].
Bowman, JM .
THEORETICAL CHEMISTRY ACCOUNTS, 2002, 108 (03) :125-133