Correlation analysis of dynamical chaos

被引:41
作者
Anishchenko, VS [1 ]
Vadivasova, TE [1 ]
Okrokvertskhov, GA [1 ]
Strelkova, GI [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Lab Nonlinear Dynam, Saratov 410026, Russia
关键词
autocorrelation function; spiral chaos; funnel chaos; harmonic noise; telegraph signal;
D O I
10.1016/S0378-4371(03)00199-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study correlation and spectral properties of chaotic self-sustained oscillations of different types. It is shown that some classical models of stochastic processes can be used to describe behavior of autocorrelation functions of chaos. The influence of noise on chaotic systems is also considered. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:199 / 212
页数:14
相关论文
共 46 条
[1]  
AFRAIMOVICH VS, 1977, DOKL AKAD NAUK SSSR+, V234, P336
[2]  
AFRAIMOVICH VS, 1989, NONLINEAR WAVES, V1, P14
[3]  
Anishchenko V. S., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P633, DOI 10.1142/S0218127492000756
[4]   Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise [J].
Anishchenko, VS ;
Vadivasova, TE ;
Kopeikin, AS ;
Kurths, J ;
Strelkova, GI .
PHYSICAL REVIEW E, 2002, 65 (03) :1-036206
[5]   Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors [J].
Anishchenko, VS ;
Vadivasova, TE ;
Kopeikin, AS ;
Kurths, J ;
Strelkova, GI .
PHYSICAL REVIEW LETTERS, 2001, 87 (05) :54101-1
[6]  
Anishchenko VS., 2002, NONLINEAR DYNAMICS C
[7]  
[Anonymous], 1975, LECT NOTES MATH
[8]  
[Anonymous], 1990, COMPLEX OSCILLATIONS
[9]  
[Anonymous], NONLINEAR WAVES
[10]   POSSIBLE NEW STRANGE ATTRACTORS WITH SPIRAL STRUCTURE [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (04) :573-579