Classical gas in nonextensive optimal Lagrange multipliers formalism

被引:43
作者
Abe, S
Martínez, S
Pennini, F
Plastino, A
机构
[1] Natl Univ La Plata, CONICET, Argentina Natl Res Council, RA-1900 La Plata, Argentina
[2] Natl Univ La Plata, Dept Phys, RA-1900 La Plata, Argentina
[3] Nihon Univ, Coll Sci & Technol, Funabashi, Chiba 2748501, Japan
基金
日本学术振兴会;
关键词
Tsallis thermostatistics; classical gas;
D O I
10.1016/S0375-9601(00)00780-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the prescription termed the optimal Lagrange multipliers formalism for extremizing the Tsallis entropy indexed by q, it is shown that some key aspects of the treatment of the classical gas problem such as the internal energy and energy correlation are formally identical in both the nonextensive q not equal 1 and extensive q = 1 cases. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:249 / 254
页数:6
相关论文
共 25 条
[1]   Correlation induced by Tsallis' nonextensivity [J].
Abe, S .
PHYSICA A, 1999, 269 (2-4) :403-409
[2]   Thermodynamic limit of a classical gas in nonextensive statistical mechanics: Negative specific heat and polytropism (vol 263, pg 424, 1999) [J].
Abe, S .
PHYSICS LETTERS A, 2000, 267 (5-6) :456-457
[3]   Thermodynamic limit of a classical gas in nonextensive statistical mechanics: Negative specific heat and polytropism [J].
Abe, S .
PHYSICS LETTERS A, 1999, 263 (4-6) :424-429
[4]  
ABE S, IN PRESS J PHYS A
[5]   Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics [J].
Boghosian, BM .
PHYSICAL REVIEW E, 1996, 53 (05) :4754-4763
[6]   Form invariance of differential equations in general relativity [J].
Chimento, LP .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) :2565-2576
[7]  
Fick E., 1990, The Quantum Statistics of Dynamic Processes
[8]  
JAYNES ET, 1963, STAT PHYSICS
[9]  
Katz A., 1967, STAT MECH
[10]   Distributions and channel capacities in generalized statistical mechanics [J].
Landsberg, PT ;
Vedral, V .
PHYSICS LETTERS A, 1998, 247 (03) :211-217