Estrogen receptor-alpha (ER) is down-regulated in the presence of its cognate ligand, estradiol (E-2), as well as in the presence of antiestrogens, through the ubiquitin proteasome pathway. Here, we show that, at pharmacological concentrations, the degradation rate of pure antagonist/endogenous ER complexes from human breast cancer MCF-7 cells is 10 times faster than that of ER-E-2 complexes, while 4-hydroxy-tamoxifen (4-OH-T)-ER complexes are stable. Whereas pure antagonist-ER complexes are firmly bound to a nuclear compartment from which they are not extractable, the 4-OH-T-ER accumulates in a soluble cell compartment. No difference was observed in the fate of ER whether bound to pure antiestrogens ICI 182,780 or RU 58668. Cycloheximide experiments showed that, while the proteasome-mediated destruction of E-2-ER (unlike that of RU 58668- and ICI 182,780-ER) complexes could implicate (or not) a protein synthesis-dependent process, both MAPKs (p38 and ERKs p44 and p42) are activated. By using a panel of kinase inhibitors/activators to study the impact of phosphorylation pathways on ER degradation, we found that protein kinase C is an enhancer of proteasome-mediated degradation of both ligand-free and ER bound to either E-2, 4-OH-T, and pure antagonists. On the contrary, protein kinase A, MAPKs, and phosphatidyl-inositol-3 kinase all impede proteasome-mediated destruction of ligand free and E-2-bound ER while only MAPKs inhibit the degradation of pure antiestrogens/ ER species. In addition, no correlation was found between the capacity of kinase inhibitors to affect ER stability and the basal or E-2-induced transcription. These results suggest that, in MCF-7 breast cancer cells, ER turnover, localization, and activity are maintained by an equilibrium between various phosphorylation pathways, which are differently modulated by ER ligands and protein kinases.