An adaptive ensemble Kalman filter for soil moisture data assimilation

被引:174
作者
Reichle, Rolf H. [1 ,3 ]
Crow, Wade T. [2 ]
Keppenne, Christian L. [1 ,4 ]
机构
[1] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[2] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA
[3] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[4] Sci Applicat Int Corp, Beltsville, MD USA
关键词
D O I
10.1029/2007WR006357
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In a 19- year twin experiment for the Red- Arkansas river basin we assimilate synthetic surface soil moisture retrievals into the NASA Catchment land surface model. We demonstrate how poorly specified model and observation error parameters affect the quality of the assimilation products. In particular, soil moisture estimates from data assimilation are sensitive to observation and model error variances and, for very poor input error parameters, may even be worse than model estimates without data assimilation. Estimates of surface heat fluxes and runoff are at best marginally improved through the assimilation of surface soil moisture and tend to have large errors when the assimilation system operates with poor input error parameters. We present a computationally affordable, adaptive assimilation system that continually adjusts model and observation error parameters in response to internal diagnostics. The adaptive filter can identify model and observation error variances and provide generally improved assimilation estimates when compared to the non- adaptive system.
引用
收藏
页数:13
相关论文
共 39 条
[1]   An adaptive covariance inflation error correction algorithm for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (02) :210-224
[2]   Assimilating remotely sensed snow observations into a macroscale hydrology model [J].
Andreadis, Konstantinos M. ;
Lettenmaier, Dennis P. .
ADVANCES IN WATER RESOURCES, 2006, 29 (06) :872-886
[3]  
[Anonymous], 1974, APPL OPTIMAL ESTIMAT
[4]   Skin temperature analysis and bias correction in a coupled land-atmosphere data assimilation system [J].
Bosilovich, Michael G. ;
Radakovich, Jon D. ;
da Silva, Arlindo ;
Todling, Ricardo ;
Verter, Frances .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2007, 85A :205-228
[5]  
CORW WT, 2005, GEOPHYS RES LETT, V32, DOI DOI 10.1029/2005GL024889
[6]   Estimating precipitation errors using spaceborne surface soil moisture retrievals [J].
Crow, W. T. ;
Bolten, J. D. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (08)
[7]   Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture [J].
Crow, Wade T. ;
Van Loon, Emiel .
JOURNAL OF HYDROMETEOROLOGY, 2006, 7 (03) :421-432
[8]   Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter [J].
De Lannoy, Gabrielle J. M. ;
Reichle, Rolf H. ;
Houser, Paul R. ;
Pauwels, Valentijn R. N. ;
Verhoest, Niko E. C. .
WATER RESOURCES RESEARCH, 2007, 43 (09)
[9]  
DEE DP, 1995, MON WEATHER REV, V123, P1128, DOI 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO
[10]  
2