Lysozyme adsorption studies at the silica/water interface using dual polarization interferometry

被引:53
作者
Lu, JR
Swann, MJ
Peel, LL
Freeman, NJ
机构
[1] Univ Manchester, Dept Phys, Biol Phys Grp, Manchester M60 1QD, Lancs, England
[2] Salford Univ Business Pk, Farfield Sensors Ltd, Salford M6 6AJ, Lancs, England
关键词
D O I
10.1021/la0360299
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lysozyme adsorption at the silica/water interface has been studied using a new analytical technique called dual polarization interferometry. This laboratory-based technique allows the build up or removal of molecular layers adsorbing or reacting on a lightly doped silicon dioxide (silica) surface to be measured in terms of thickness and refractive index changes with time. Lysozyme adsorption was studied at a range of concentrations from 0.03 to 4.0 g dm(-3) and at both pH 4 and pH 7. Adsorbed layers ranging from 14 to 43 +/- 1 Angstrom in thickness and 0.21 to 2.36 +/- 0.05 mg m(-2) in mass coverage were observed at pH 4 with increasing lysozyme concentration, indicating a strong deformation of the monolayer over the low concentration range and the formation of an almost complete sideways-on bilayer toward the high concentration of 4 g dm(-3). At pH 7, the thickness of adsorbed layers varied from 16 to 54 +/- 1 Angstrom with significantly higher surface coverage (0.74 to 3.29 +/- 0.05 mg m(-2)), again indicating structural deformation during the initial monolayer formation, followed by a gradual transition to bilayer adsorption over the high concentration end. The pH recycling performed at a fixed lysozyme concentration of 1.0 g dm(-3) indicated a broadly reversible adsorption regardless of whether the pH was cycled from pH 7 to pH 4 and back again or vice versa. These observations are in good agreement with earlier studies undertaken using neutron reflection although the fine details of molecular orientations in the layers differ subtly.
引用
收藏
页码:1827 / 1832
页数:6
相关论文
共 22 条
[1]   Ellipsometry on thin organic layers of biological interest: characterization and applications [J].
Arwin, H .
THIN SOLID FILMS, 2000, 377 :48-56
[2]   COMPETITIVE ADSORPTION OF ALBUMIN AGAINST COLLAGEN AT SOLUTION AIR AND SOLUTION POLYETHYLENE INTERFACES [J].
BASZKIN, A ;
BOISSONNADE, MM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1993, 27 (02) :145-152
[3]   Quantification of adsorbed human serum albumin at solid interfaces: a comparison between radioimmunoassay (RIA) and simple null ellipsometry [J].
Benesch, J ;
Askendal, A ;
Tengvall, P .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2000, 18 (02) :71-81
[4]   PROTEIN INTERACTIONS AT SOLID-SURFACES [J].
CLAESSON, PM ;
BLOMBERG, E ;
FROBERG, JC ;
NYLANDER, T ;
ARNEBRANT, T .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1995, 57 :161-227
[5]   Young's fringes from vertically integrated slab waveguides: Applications to humidity sensing [J].
Cross, GH ;
Ren, YT ;
Freeman, NJ .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (11) :6483-6488
[6]  
CROSS GH, 2001, SENSOR ASSEMBLY
[7]   Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data [J].
Davis, TM ;
Wilson, WD .
ANALYTICAL BIOCHEMISTRY, 2000, 284 (02) :348-353
[8]   NEUTRON REFLECTION STUDY OF BOVINE BETA-CASEIN ADSORBED ON OTS SELF-ASSEMBLED MONOLAYERS [J].
FRAGNETO, G ;
THOMAS, RK ;
RENNIE, AR ;
PENFOLD, J .
SCIENCE, 1995, 267 (5198) :657-660
[9]   GLOBULAR-PROTEINS AT SOLID-LIQUID INTERFACES [J].
HAYNES, CA ;
NORDE, W .
COLLOIDS AND SURFACES B-BIOINTERFACES, 1994, 2 (06) :517-566
[10]   Factors that determine the protein resistance of oligoether self-assembled monolayers - Internal hydrophilicity, terminal hydrophilicity, and lateral packing density [J].
Herrwerth, S ;
Eck, W ;
Reinhardt, S ;
Grunze, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (31) :9359-9366