Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer's disease

被引:71
作者
Lovell, MA [1 ]
Smith, JL
Xiong, SL
Markesbery, WR
机构
[1] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40536 USA
[2] Univ Kentucky, Dept Chem, Lexington, KY 40536 USA
[3] Univ Kentucky, Dept Neurol & Pathol, Lexington, KY 40536 USA
关键词
Alzheimer's disease; zinc transporter protein-1; senile plaques; neurofibrillary tangles;
D O I
10.1007/BF03033884
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several studies show increased levels of zinc (Zn) in the Alzheimer's disease (AD) brain. More recently, alterations in synaptic Zn and Zn transporter proteins (ZnT) have been implicated in the accumulation of amyloid plaques in an animal model of AD. To determine if alterations in ZnT proteins are present in AD brain, we measured levels of ZnT-1, the protein responsible for export of Zn to the extracellular space in the amygdala (AMY), hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyrus (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of 19 AD and 14 age-matched control subjects. To determine if alterations of ZnT-1 occur early in the progression of AD, we analyzed protein levels in the HPG, SMTG and CER of 5 subjects with mild cognitive impairment (MCI), 5 subjects with early AD (EAD) and 4 appropriately age-matched controls. Western blot and dot-blot analysis showed statistically significant (p < 0.05) elevations of ZnT-1 in AD AMY, HPG, and IPL and significantly depleted ZnT-1 in AD SMTG compared to age-matched control subjects. We also observed statistically significant elevations of ZnT-1 in the HPG of EAD subjects compared with controls. In contrast to late-stage AD subjects, ZnT-1 levels were significantly decreased in HPG of subjects with MCI and were significantly elevated in the SMTG of both MCI and EAD subjects compared with age-matched controls. Correlation analysis of ZnT-1 levels and senile plaque (SP) and neurofibrillary tangle (NFT) counts in the AMY and CA1 and subiculum of AD HPG showed a significant (p < 0.05) positive correlation with SP counts and a trend towards a significant (p = 0.12) positive correlation with NFT counts in AMY. Overall, our results show alterations in one of the key proteins responsible for maintenance of Zn homeostasis early in the progression of AD suggesting that alterations in Zn balance could be involved in the pathogenesis of neuron degeneration and amyloid deposition in AD.
引用
收藏
页码:265 / 271
页数:7
相关论文
共 45 条
[1]  
*AG NAT I, 1995, PROGR REP ALZH DIS
[2]  
Aging NIo, 1997, NEUROBIOL AGING, V18, pS1
[3]   RELEASE OF ENDOGENOUS ZN-2+ FROM BRAIN-TISSUE DURING ACTIVITY [J].
ASSAF, SY ;
CHUNG, SH .
NATURE, 1984, 308 (5961) :734-736
[4]   A CRITICAL PHYSIOLOGICAL-ROLE OF ZINC IN THE STRUCTURE AND FUNCTION OF BIOMEMBRANES [J].
BETTGER, WJ ;
ODELL, BL .
LIFE SCIENCES, 1981, 28 (13) :1425-1438
[5]   RAPID INDUCTION OF ALZHEIMER A-BETA AMYLOID FORMATION BY ZINC [J].
BUSH, AI ;
PETTINGELL, WH ;
MULTHAUP, G ;
PARADIS, MD ;
VONSATTEL, JP ;
GUSELLA, JF ;
BEYREUTHER, K ;
MASTERS, CL ;
TANZI, RE .
SCIENCE, 1994, 265 (5177) :1464-1467
[6]  
Choi DW, 1996, COLD SPRING HARB SYM, V61, P385
[7]   Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene [J].
Cole, TB ;
Wenzel, HJ ;
Kafer, KE ;
Schwartzkroin, PA ;
Palmiter, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1716-1721
[8]   Zinc metabolism in the brain: Relevance to human neurodegenerative disorders [J].
Cuajungco, MP ;
Lees, GJ .
NEUROBIOLOGY OF DISEASE, 1997, 4 (3-4) :137-169
[9]   Increased amount of zinc in the hippocampus and amygdala of Alzheimer's diseased brains: A proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material [J].
Danscher, G ;
Jensen, KB ;
Frederickson, CJ ;
Kemp, K ;
Andreasen, A ;
Juhl, S ;
Stoltenberg, M ;
Ravid, R .
JOURNAL OF NEUROSCIENCE METHODS, 1997, 76 (01) :53-59
[10]   THE DITHIZONE, TIMM SULFIDE SILVER AND THE SELENIUM METHODS DEMONSTRATE A CHELATABLE POOL OF ZINC IN CNS - A PROTON ACTIVATION (PIXE) ANALYSIS OF CARBON-TETRACHLORIDE EXTRACTS FROM RAT BRAINS AND SPINAL CORDS INTRAVITALLY TREATED WITH DITHIZONE [J].
DANSCHER, G ;
HOWELL, G ;
PEREZCLAUSELL, J ;
HERTEL, N .
HISTOCHEMISTRY, 1985, 83 (05) :419-422