siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5) P3-mTOR signaling pathway as a primary regulator of transferrin uptake

被引:49
作者
Galvez, Thierry [1 ]
Teruel, Mary N.
Do Heo, Won
Jones, Joshua T.
Kim, Man Lyang
Liou, Jen
Myers, Jason W.
Meyer, Tobias
机构
[1] Stanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Bio X Program, Stanford, CA 94305 USA
关键词
D O I
10.1186/gb-2007-8-7-r142
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Iron uptake via endocytosis of iron-transferrin-transferrin receptor complexes is a rate-limiting step for cell growth, viability and proliferation in tumor cells as well as non-transformed cells such as activated lymphocytes. Signaling pathways that regulate transferrin uptake have not yet been identified. Results: We surveyed the human signaling proteome for regulators that increase or decrease transferrin uptake by screening 1,804 dicer-generated signaling small interfering RNAs using automated quantitative imaging. In addition to known transport proteins, we identified 11 signaling proteins that included a striking signature set for the phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5) P3)-target of rapamycin (mTOR) signaling pathway. We show that the PI3K- mTOR signaling pathway is a positive regulator of transferrin uptake that increases the number of transferrin receptors per endocytic vesicle without affecting endocytosis or recycling rates. Conclusion: Our study identifies the PtdIns( 3,4,5) P3-mTOR signaling pathway as a new regulator of iron-transferrin uptake and serves as a proof-of-concept that targeted RNA interference screens of the signaling proteome provide a powerful and unbiased approach to discover or rank signaling pathways that regulate a particular cell function.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Chemistry and biology of eukaryotic iron metabolism [J].
Aisen, P ;
Enns, C ;
Wessling-Resnick, M .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2001, 33 (10) :940-959
[2]   Microarrays of lentiviruses for gene function screens in immortalized and primary cells [J].
Bailey, SN ;
Ali, SM ;
Carpenter, AE ;
Higgins, CO ;
Sabatini, DM .
NATURE METHODS, 2006, 3 (02) :117-122
[3]   HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation [J].
Bianchi, L ;
Tacchini, L ;
Cairo, G .
NUCLEIC ACIDS RESEARCH, 1999, 27 (21) :4223-4227
[4]  
BILANGES B, 2007, IN PRESS ONCOGENE
[5]   Regulated portals of entry into the cell [J].
Conner, SD ;
Schmid, SL .
NATURE, 2003, 422 (6927) :37-44
[6]   PH AND THE RECYCLING OF TRANSFERRIN DURING RECEPTOR-MEDIATED ENDOCYTOSIS [J].
DAUTRYVARSAT, A ;
CIECHANOVER, A ;
LODISH, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (08) :2258-2262
[7]   Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression [J].
Edinger, AL ;
Cinalli, RM ;
Thompson, CB .
DEVELOPMENTAL CELL, 2003, 5 (04) :571-582
[8]   Selective regulation of neurite extension and synapse formation by the β but not the of isoform of CaMKII [J].
Fink, CC ;
Bayer, KU ;
Myers, JW ;
Ferrell, JE ;
Schulman, H ;
Meyer, T .
NEURON, 2003, 39 (02) :283-297
[9]   AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression [J].
Gera, JF ;
Mellinghoff, IK ;
Shi, YJ ;
Rettig, MB ;
Tran, C ;
Hsu, JH ;
Sawyers, CL ;
Lichtenstein, AK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (04) :2737-2746
[10]   Upstream and downstream of mTOR [J].
Hay, N ;
Sonenberg, N .
GENES & DEVELOPMENT, 2004, 18 (16) :1926-1945