Forecasting using relative entropy

被引:54
作者
Robertson, JC [1 ]
Tallman, EW
Whiteman, CH
机构
[1] Fed Reserve Bank Atlanta, Atlanta, GA USA
[2] Univ Iowa, Iowa City, IA 52242 USA
关键词
approximate prior information; Kullback-Leibler information criterion; relative numerical efficiency;
D O I
10.1353/mcb.2005.0034
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The paper describes a relative entropy procedure for imposing restrictions on simulated forecast distributions from a variety of models. Starting from an empirical forecast distribution for some variables of interest, the technique generates a new empirical distribution that satisfies a set of moment restrictions not used in the construction of the original. The new distribution is informationally as close as possible to the original in the sense of minimizing the Kullback-Leibler Information Criterion, or relative entropy. We illustrate the technique with an example related to monetary policy that shows how to introduce restrictions from economic theory into a model's forecasts.
引用
收藏
页码:383 / 401
页数:19
相关论文
共 23 条
[1]  
[Anonymous], COMMUNICATION 0723
[2]  
COGLEY T, 2003, BAYESIAN FAN CHARTS
[3]  
CRESSIE N, 1984, J ROY STAT SOC B MET, V46, P440
[4]   I-DIVERGENCE GEOMETRY OF PROBABILITY DISTRIBUTIONS AND MINIMIZATION PROBLEMS [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1975, 3 (01) :146-158
[5]  
Doan T., 1984, ECON REV, V3, P1, DOI DOI 10.1080/07474938408800053
[6]  
FOSTER FD, 2004, UNPUB BAYESIAN PREDI
[7]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[8]  
GRANGER CW, 2002, DEPENDENCE METRIC PO
[9]  
Hobson A., 1971, CONCEPTS STAT MECH
[10]   An information-theoretic alternative to generalized method of moments estimation [J].
Kitamura, Y ;
Stutzer, M .
ECONOMETRICA, 1997, 65 (04) :861-874