Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways

被引:555
作者
Xia, Tian [1 ]
Kovochich, Michael [1 ]
Liong, Monty [2 ]
Zink, Jeffrey I. [2 ,4 ]
Nel, Andre E. [1 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Med, Div NanoMed, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, So Calif Particle Ctr, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
cationic nanoparticle; nanotoxicology; endocytosis; mitochondria; cell death;
D O I
10.1021/nn700256c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exponential increase in the number of new nanomaterials that are being produced increases the likelihood of adverse biological effects in humans and the environment. In this study we compared the effects of cationic nanoparticles in five different cell lines that represent portal-of-entry or systemic cellular targets for engineered nanoparticles. Although 60 nm NH2-labeled polystyrene (PS) nanospheres were highly toxic in macrophage (RAW 264.7) and epithelial (BEAS-2B) cells, human microvascular endothelial (HMEC), hepatoma (HEPA-1), and pheochromocytoma (PC-12) cells were relatively resistant to particle injury. While the death pathway in RAW 264.7 cells involves caspase activation, the cytotoxic response in BEAS-2B cells is more necrotic in nature. Using fluorescent-labeled NH2-PS, we followed the routes of particle uptake. Confocal microscopy showed that the cationic particles entered a LAMP-1 positive lysosomal compartment in RAW 264.7 cells from where the particles could escape by lysosomal rupture. A proton pump inhibitor interfered in this pathway. Subsequent deposition of the particles in the cytosol induced an increase in mitochondrial Ca2+ uptake and cell death that could be suppressed by cyclosporin A (CsA). In contrast, NH2-PS toxicity in BEAS-2B cells did not involve the LAMP-1 endosomal compartment, stimulation of proton pump activity, or an increase in mitochondrial Ca2+. Particles were taken up by caveolae, and their toxicity could be disrupted by cholesterol extraction from the surface membrane. Although the particles induced mitochondrial damage and ATP depletion, CsA did not affect cytotoxicity. Cationic particles were taken up into HEPA-1, HMEC, and PC-12 cells, but this did not lead to lysosomal permeabilization, increased Ca2+ flux, or mitochondrial damage. Taken together, the results of this study demonstrate the importance of cell-specific uptake mechanisms and pathways that could lead to sensitivity or resistance to cationic particle toxicity.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 49 条
[1]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[2]   Exploitation of intracellular pH gradients in the cellular delivery of macromolecules [J].
Asokan, A ;
Cho, MJ .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (04) :903-913
[3]   Cathepsin D triggers bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis [J].
Bidère, N ;
Lorenzo, HK ;
Carmona, S ;
Laforge, M ;
Harper, F ;
Dumont, C ;
Senik, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (33) :31401-31411
[4]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[5]   Interactions between dendrimer biocides and bacterial membranes [J].
Chen, CZS ;
Cooper, SL .
BIOMATERIALS, 2002, 23 (16) :3359-3368
[6]   The potential environmental impact of engineered nanomaterials [J].
Colvin, VL .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1166-1170
[7]   Caveolae and calcium handling, a review and a hypothesis [J].
Daniel, E. E. ;
El-Yazbi, A. ;
Cho, W. J. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2006, 10 (02) :529-544
[8]   Nanotoxicology [J].
Donaldson, K ;
Stone, V ;
Tran, CL ;
Kreyling, W ;
Borm, PJA .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2004, 61 (09) :727-728
[9]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452
[10]   Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures [J].
Florea, BI ;
Meaney, C ;
Junginger, HE ;
Borchard, G .
AAPS PHARMSCI, 2002, 4 (03)