Regulation of inducible nitric oxide synthase by self-generated NO

被引:63
作者
Abu-Soud, HM
Ichimori, K
Nakazawa, H
Stuehr, DJ
机构
[1] Cleveland Clin, Lerner Res Inst, Dept Immunol, Cleveland, OH 44195 USA
[2] Cleveland Clin, Lerner Res Inst, Dept Cell Biol, Cleveland, OH 44195 USA
[3] Tokai Univ, Dept Physiol, Isehara, Kanagawa 2591193, Japan
关键词
D O I
10.1021/bi010066m
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A ferric heme-nitric oxide (NO) complex can build up in mouse inducible nitric oxide synthase (iNOS) during NO synthesis from L-arginine. We investigated its formation kinetics, effect on catalytic activity, dependence on solution NO concentration, and effect on enzyme oxygen response (apparent KmO(2)). Heme-NO complex formation was biphasic and was linked kinetically to an inhibition of electron flux and catalysis in iNOS. Experiments that utilized a superoxide generating system to scavenge NO showed that the magnitude of heme-NO complex formation directly depended on the NO concentration achieved in the reaction solution. However, a minor portion of heme-NO complex (20%) still formed during NO synthesis even when solution NO was completely scavenged. Formation of the intrinsic heme-NO complex, and the heme-NO complex related to buildup of solution NO, increased the apparent KmO2 of iNOS by 10- and 4-fold, respectively. Together, the data show heme-NO complex buildup in iNOS is due to both intrinsic NO binding and to equilibrium binding of solution NO, with the latter predominating when NO reaches high nanomolar to low micromolar concentrations. This behavior distinguishes iNOS from the other NOS isoforms and indicates a more complex regulation is possible for its activity and oxygen response in biologic settings.
引用
收藏
页码:6876 / 6881
页数:6
相关论文
共 36 条
[1]   Nitric oxide is a physiological substrate for mammalian peroxidases [J].
Abu-Soud, HM ;
Hazen, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) :37524-37532
[2]   Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase [J].
Abu-Soud, HM ;
Wu, CQ ;
Ghosh, DK ;
Stuehr, DJ .
BIOCHEMISTRY, 1998, 37 (11) :3777-3786
[3]   Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase [J].
Abu-Soud, HM ;
Ichimori, K ;
Presta, A ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17349-17357
[4]   NEURONAL NITRIC-OXIDE SYNTHASE SELF-INACTIVATES BY FORMING A FERROUS-NITROSYL COMPLEX DURING AEROBIC CATALYSIS [J].
ABUSOUD, HM ;
WANG, JL ;
ROUSSEAU, DL ;
FUKUTO, JM ;
IGNARRO, LJ ;
STUEHR, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (39) :22997-23006
[5]   Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension [J].
AbuSoud, HM ;
Rousseau, DL ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (51) :32515-32518
[6]   Molecular basis for hyperactivity in tryptophan 409 mutants of neuronal NO synthase [J].
Adak, S ;
Wang, Q ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17434-17439
[7]   Formation and reactions of the heme-dioxygen intermediate in the first and second steps of nitric oxide synthesis as studied by stopped-flow spectroscopy under single-turnover conditions [J].
Boggs, S ;
Huang, LX ;
Stuehr, DJ .
BIOCHEMISTRY, 2000, 39 (09) :2332-2339
[8]   The structure of nitric oxide synthase oxygenase domain and inhibitor complexes [J].
Crane, BR ;
Arvai, AS ;
Gachhui, R ;
Wu, CQ ;
Ghosh, DK ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1997, 278 (5337) :425-431
[9]   Nitric oxide synthesis in the lung - Regulation by oxygen through a kinetic mechanism [J].
Dweik, RA ;
Laskowski, D ;
Abu-Soud, HM ;
Kaneko, FT ;
Hutte, R ;
Stuehr, DJ ;
Erzurum, SC .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (03) :660-666
[10]   Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation [J].
Fischmann, TO ;
Hruza, A ;
Niu, XD ;
Fossetta, JD ;
Lunn, CA ;
Dolphin, E ;
Prongay, AJ ;
Reichert, P ;
Lundell, DJ ;
Narula, SK ;
Weber, PC .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (03) :233-242