Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21

被引:124
作者
Cayrol, C [1 ]
Ducommun, B [1 ]
机构
[1] Univ Toulouse 3, CNRS, IPBS, F-31077 Toulouse, France
关键词
cyclin-dependent kinases; p21Cip1; PCNA; degradation;
D O I
10.1038/sj.onc.1202189
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cyclin-dependent kinase (CDK) inhibitor p21(Cip1/Waf1) plays an essential role in the control of cell proliferation by modulating the activity of cyclin/CDK complexes in response to various intracellular or extracellular signals. Small variations in p21 expression levels may determine whether it acts as an inhibitor or an assembly factor for cyclin/CDK complexes. It is therefore critical to better characterize the mechanisms regulating p21 abundance. Here, we show, using a tetracycline-regulated system in p53-deficient DLD-1 human colon cancer cells, that p21 protein levels and stability are regulated by the proteasome-dependent degradation pathway and by association with its partners, CDKs and PCNA, A p21 mutant deficient for interaction with CDKs, p21(CDK-), displayed an enhanced stability and greatly reduced sensitivity to proteasome-mediated proteolysis, indicating that association with cyclin/CDK complexes may trigger p21 degradation. In contrast, a p21 mutant impaired in the interaction with PCNA, p21(PCNA-), exhibited a decreased stability, suggesting that association with PCNA protects p21 from proteasome-dependent degradation. Furthermore, the abundance of p21 itself, in addition to protein-protein interactions, may also modulate p21 stability since we found that high levels of p21 expression overcome proteasome-dependent regulation of p21 accumulation.
引用
收藏
页码:2437 / 2444
页数:8
相关论文
共 34 条
[1]   CYCLIN D1 IS A NUCLEAR-PROTEIN REQUIRED FOR CELL-CYCLE PROGRESSION IN G(1) [J].
BALDIN, V ;
LUKAS, J ;
MARCOTE, MJ ;
PAGANO, M ;
DRAETTA, G .
GENES & DEVELOPMENT, 1993, 7 (05) :812-821
[2]   Proteasome-dependent regulation of p21(WAF1/CIP1) expression [J].
Blagosklonny, MV ;
Wu, GS ;
Omura, S ;
ElDeiry, WS .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 227 (02) :564-569
[3]   RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY [J].
BRUGAROLAS, J ;
CHANDRASEKARAN, C ;
GORDON, JI ;
BEACH, D ;
JACKS, T ;
HANNON, GJ .
NATURE, 1995, 377 (6549) :552-557
[4]   Regulation of E2F through ubiquitin-proteasome-dependent degradation: Stabilization by the pRB tumor suppressor protein [J].
Campanero, MR ;
Flemington, EK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2221-2226
[5]   p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells [J].
Cayrol, C ;
Knibiehler, M ;
Ducommun, B .
ONCOGENE, 1998, 16 (03) :311-320
[6]  
Chen JJ, 1996, MOL CELL BIOL, V16, P4673
[7]   MICE LACKING P21(C/P1/WAF1) UNDERGO NORMAL DEVELOPMENT, BUT ARE DEFECTIVE IN G1 CHECKPOINT CONTROL [J].
DENG, CX ;
ZHANG, PM ;
HARPER, JW ;
ELLEDGE, SJ ;
LEDER, P .
CELL, 1995, 82 (04) :675-684
[8]   A question of balance: The role of cyclin-kinase inhibitors in development and tumorigenesis [J].
Elledge, SJ ;
Winston, J ;
Harper, JW .
TRENDS IN CELL BIOLOGY, 1996, 6 (10) :388-392
[9]   INHIBITION OF PROTEASOME ACTIVITIES AND SUBUNIT-SPECIFIC AMINO-TERMINAL THREONINE MODIFICATION BY LACTACYSTIN [J].
FENTEANY, G ;
STANDAERT, RF ;
LANE, WS ;
CHOI, S ;
COREY, EJ ;
SCHREIBER, SL .
SCIENCE, 1995, 268 (5211) :726-731
[10]   Adenovirus E1A-regulated transcription factor p120E4F inhibits cell growth and induces the stabilization of the cdk inhibitor p21WAF1 [J].
Fernandes, ER ;
Zhang, JY ;
Rooney, RJ .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (01) :459-467