Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

被引:18
作者
Han, Seong Ik [2 ]
Jeong, Chan Se [3 ]
Yang, Soon Yong [1 ]
机构
[1] Univ Ulsan, Dept Mech & Automot Engn, Ulsan 680749, South Korea
[2] Pusan Natl Univ, Sch Elect Engn, Pusan 609735, South Korea
[3] Univ Ulsan, Grad Sch Mech & Automot Engn, Ulsan 680749, South Korea
关键词
LuGre friction model; Sliding mode control; Recurrent fuzzy neural networks; Adaptive friction estimator; Servo system; COMPENSATION; DRIVE;
D O I
10.1007/s12206-012-0213-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme.
引用
收藏
页码:1149 / 1159
页数:11
相关论文
共 16 条
[1]   The generalized Maxwell-slip model: A novel model for friction simulation and compensation [J].
Al-Bender, F ;
Lampaert, V ;
Swevers, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1883-1887
[2]   Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding mode controller [J].
Choi, Jeong Ju ;
Han, Seong Ik ;
Kim, Jong Shik .
MECHATRONICS, 2006, 16 (02) :97-104
[3]  
deWit CC, 1997, INT J ADAPT CONTROL, V11, P65, DOI 10.1002/(SICI)1099-1115(199702)11:1<65::AID-ACS395>3.0.CO
[4]  
2-3
[5]   A NEW MODEL FOR CONTROL OF SYSTEMS WITH FRICTION [J].
DEWIT, CC ;
OLSSON, H ;
ASTROM, KJ ;
LISCHINSKY, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) :419-425
[6]   Single state elastoplastic friction models [J].
Dupont, P ;
Hayward, V ;
Armstrong, B ;
Altpeter, F .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (05) :787-792
[7]   Adaptive friction compensation using neural network approximations [J].
Huang, SN ;
Tan, KK ;
Lee, TH .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2000, 30 (04) :551-557
[8]   Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems [J].
Leu, YG ;
Wang, WY ;
Lee, TT .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04) :853-861
[9]   Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive [J].
Lin, CH .
IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2004, 151 (06) :711-724
[10]   Robust recurrent fuzzy neural network control for linear synchronous motor drive system [J].
Lin, FJ ;
Wai, RJ .
NEUROCOMPUTING, 2003, 50 :365-390