Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization

被引:146
作者
Agarwal, Alekh [1 ]
Bartlett, Peter L. [1 ,2 ,3 ]
Ravikumar, Pradeep [4 ]
Wainwright, Martin J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[4] Univ Texas Austin, Dept Comp Sci, Austin, TX 78701 USA
基金
美国国家科学基金会;
关键词
Computational learning theory; convex optimization; Fano's inequality; information-based complexity; minimax analysis; oracle complexity; MINIMAX RATES;
D O I
10.1109/TIT.2011.2182178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We introduce a new notion of discrepancy between functions, and use it to reduce problems of stochastic convex optimization to statistical parameter estimation, which can be lower bounded using information-theoretic methods. Using this approach, we improve upon known results and obtain tight minimax complexity estimates for various function classes.
引用
收藏
页码:3235 / 3249
页数:15
相关论文
共 25 条
[1]  
[Anonymous], P ANN C LEARN THEOR
[2]  
[Anonymous], P ADV NEUR INF PROC
[3]  
[Anonymous], 2009, Advances in Neural Information Processing Systems
[4]  
[Anonymous], 2013, Introductory lectures on convex optimization: A basic course
[5]  
[Anonymous], 1995, NONLINEAR PROGRAMMIN
[6]   Mirror descent and nonlinear projected subgradient methods for convex optimization [J].
Beck, A ;
Teboulle, M .
OPERATIONS RESEARCH LETTERS, 2003, 31 (03) :167-175
[7]   APPROXIMATION IN METRIC-SPACES AND ESTIMATION THEORY [J].
BIRGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :181-237
[8]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[9]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
[10]  
Ehrenfeucht A., 1988, P 1 ANN WORKSHOP COM, P139