Generalized projections, decompositions, and the Pythagorean-type theorem in Banach spaces

被引:14
作者
Alber, YI [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Banach spaces; duality mappings; generalized projection operators; dual and polar cones; basic variational principle for generalized projections; Lyapunov functionals; Young-Fenchel transformation;
D O I
10.1016/S0893-9659(98)00112-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate new properties of the generalized projection operators on convex closed cones in uniformly convex end uniformly smooth Banach spaces; establish decompositions theorems for arbitrary elements both in primary and dual spaces; and prove the Banach space analogue of the Pythagorean-type theorem. Earlier, all these results were known only in Hilbert spaces. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 8 条
[1]  
Alber Y., 1994, J. Panamerican. Math., V4, P39
[2]  
Alber YI, 1996, THEORY APPL NONLINEA, V178, P15
[3]  
ALBER YI, 1997, J CONVEX ANAL, V4, P1
[4]  
Diestel J., 1975, LECT NOTES MATH, V485
[5]   MODULI OF CONVEXITY AND SMOOTHNESS [J].
FIGIEL, T .
STUDIA MATHEMATICA, 1976, 56 (02) :121-155
[6]  
MAURIN K, 1972, METHODS HILBERT SPAC
[7]  
MOREAU JJ, 1962, CR HEBD ACAD SCI, V255, P238
[8]  
Schaefer H. H., 1971, Topological vector spaces