Quantum-error correction and orthogonal geometry

被引:558
作者
Calderbank, AR [1 ]
Rains, EM [1 ]
Shor, PW [1 ]
Sloane, NJA [1 ]
机构
[1] INST DEF ANAL, PRINCETON, NJ 08540 USA
关键词
D O I
10.1103/PhysRevLett.78.405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A group theoretic framework is introduced that simplifies the description of known quantum error-correcting codes and greatly facilitates the construction of new examples. Codes are given which map 3 qubits to 8 qubits correcting 1 error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2 errors, and 1 to 29 qubits correcting 5 errors.
引用
收藏
页码:405 / 408
页数:4
相关论文
共 20 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[3]  
BRAUNSTEIN SL, QUANTPH9604036 LANL
[4]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[5]  
CALDERBANK AR, IN PRESS P LONDON MA
[6]   Quantum error correction for communication [J].
Ekert, A ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (12) :2585-2588
[7]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[8]  
Kleidman P, 1990, LONDON MATH SOC LECT, V129
[9]  
KNILL E, QUANTPH9604034 LANL
[10]   Perfect quantum error correcting code [J].
Laflamme, R ;
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :198-201