A hybrid approach to global optimization using a clustering algorithm in a genetic search framework

被引:28
作者
Hanagandi, V
Nikolaou, M
机构
[1] GE, Ctr Corp Res & Dev, Schenectady, NY 12301 USA
[2] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA
关键词
hybrid approach; global optimization; clustering algorithm;
D O I
10.1016/S0098-1354(98)00251-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The concern of this work is global optimization using genetic algorithms (GAs). In this work we propose a synergy between the cluster analysis technique, popular in classical stochastic global optimization, and the GA to accomplish global optimization. This synergy minimizes redundant searches around local optima and enhances the capability of the GA to explore new areas in the search space. The proposed methodology demonstrates superior performance when compared with the simple GA on benchmark cases. We also report our solution of the optimal pumps configuration synthesis problem. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1913 / 1925
页数:13
相关论文
共 13 条
[1]   A GENETIC ALGORITHMIC FRAMEWORK FOR PROCESS DESIGN AND OPTIMIZATION [J].
ANDROULAKIS, IP ;
VENKATASUBRAMANIAN, V .
COMPUTERS & CHEMICAL ENGINEERING, 1991, 15 (04) :217-228
[2]  
[Anonymous], 1978, GLOBAL OPTIMISATION
[3]  
[Anonymous], 1991, Handbook of genetic algorithms
[4]   A STOCHASTIC METHOD FOR GLOBAL OPTIMIZATION [J].
BOENDER, CGE ;
KAN, AHGR ;
TIMMER, GT ;
STOUGIE, L .
MATHEMATICAL PROGRAMMING, 1982, 22 (02) :125-140
[5]  
De Jong K. A., 1975, ANAL BEHAV CLASS GEN
[6]  
Goldberg D., 1989, GENETIC ALGORITHMS S
[7]  
GOMULKA J, 1978, GLOBAL OPTIMISATION, V2
[8]  
HOLLAND JH, 1975, ADAPTATION NATURAL A
[9]  
KAN AHG, 1984, NUMERICAL OPTIMIZATI
[10]  
More J. J., 1993, OPTIMIZATION SOFTWAR