Biprimitive graphs of smallest order

被引:27
作者
Du, SF
Marusic, D
机构
[1] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] Univ Ljubljana, IMFM, Oddelek Matemat, Ljubljana 1111, Slovenia
关键词
primitive group; semisymmetric graph; biprimitive graph;
D O I
10.1023/A:1018625926088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A regular and edge-transitive graph which is not vertex-transitive is said to be semisymmetric. Every semisymmetric graph is necessarily bipartite, with the two parts having equal size and the automorphism group acting transitively on each of these parts. A semisymmetric graph is called biprimitive if its automorphism group acts primitively on each part. Tn this paper biprimitive graphs of smallest order are determined.
引用
收藏
页码:151 / 156
页数:6
相关论文
共 15 条
[1]  
Bouwer I. Z., 1972, Journal of Combinatorial Theory, Series B, V12, P32, DOI 10.1016/0095-8956(72)90030-5
[2]   AN EDGE BUT NOT VERTEX TRANSITIVE CUBIC GRAPH [J].
BOUWER, IZ .
CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (04) :533-&
[3]   FINITE PERMUTATION-GROUPS AND FINITE SIMPLE-GROUPS [J].
CAMERON, PJ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JAN) :1-22
[4]  
Conway J., 1985, ATLAS FINITE GROUPS
[5]   THE PRIMITIVE PERMUTATION-GROUPS OF DEGREE LESS THAN 1000 [J].
DIXON, JD ;
MORTIMER, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :213-238
[6]  
DU SF, 1995, GRAPH THEORY NOTES N, V29, P48
[7]  
DU SF, UNPUB CLASSIFICATION
[8]  
Folkman J., 1967, J. Combinatorial Theory, V3, P215
[9]  
Huppert B., 1967, Endliche Gruppen I, VI
[10]  
IOFINOVA ME, 1985, INVESTIGATION ALGEBR, P124