Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells

被引:188
作者
Dalal, Yamini
Wang, Hongda
Lindsay, Stuart
Henikoff, Steven
机构
[1] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA
[2] Howard Hughes Med Inst, Seattle, WA USA
[3] Arizona State Univ, Biodesign Inst, Tempe, AZ USA
基金
美国国家科学基金会;
关键词
D O I
10.1371/journal.pbio.0050218
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical "beads-on-a-string'' appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.
引用
收藏
页码:1798 / 1809
页数:12
相关论文
共 54 条
[1]   Histone H3 variants specify modes of chromatin assembly [J].
Ahmad, K ;
Henikoff, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :16477-16484
[2]   Centromeres are specialized replication domains in heterochromatin [J].
Ahmad, K ;
Henikoff, S .
JOURNAL OF CELL BIOLOGY, 2001, 153 (01) :101-109
[3]   Building the centromere: from foundation proteins to 3D organization [J].
Amor, DJ ;
Kalitsis, P ;
Sumer, H ;
Choo, KHA .
TRENDS IN CELL BIOLOGY, 2004, 14 (07) :359-368
[4]   Split decision: What happens to nucleosomes during DNA replication? [J].
Annunziato, AT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (13) :12065-12068
[5]  
BLOOM KS, 1984, J CELL BIOL, V99, P1559, DOI 10.1083/jcb.99.5.1559
[6]   Conserved organization of centromeric chromatin in flies and humans [J].
Blower, MD ;
Sullivan, BA ;
Karpen, GH .
DEVELOPMENTAL CELL, 2002, 2 (03) :319-330
[7]   The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions [J].
Blower, MD ;
Karpen, GH .
NATURE CELL BIOLOGY, 2001, 3 (08) :730-739
[8]   Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant [J].
Collins, KA ;
Furuyama, S ;
Biggins, S .
CURRENT BIOLOGY, 2004, 14 (21) :1968-1972
[9]   Dynamics of replication-independent histone turnover in budding yeast [J].
Dion, Michael F. ;
Kaplan, Tommy ;
Kim, Minkyu ;
Buratowski, Stephen ;
Friedman, Nir ;
Rando, Oliver J. .
SCIENCE, 2007, 315 (5817) :1405-1408
[10]  
Echalier G., 1997, Drosophila Cells in Culture