On modeling epidemics. Including latency, incubation and variable susceptibility

被引:65
作者
Ahmed, E [1 ]
Agiza, HN [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
PHYSICA A | 1998年 / 253卷 / 1-4期
关键词
D O I
10.1016/S0378-4371(97)00665-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A cellular automata model for an epidemic is given. It includes inhomogeneous mixing, latency, incubation and variable susceptibility to the disease. These features are shown to be extremely difficult to be studied using differential equations. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 10 条
[1]  
AHARONY A, 1992, INTRO PERCLATION THE
[2]  
BOCCARA N, 1994, CELLULAR AUTOMATA DY
[3]   Incorporating immunological ideas in epidemiological models [J].
Dushoff, J .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 180 (03) :181-187
[4]  
Edelstein-Keshet L., 1988, MATH MODELS BIOL
[5]   ARE DAMAGE SPREADING TRANSITIONS GENERICALLY IN THE UNIVERSALITY CLASS OF DIRECTED PERCOLATION [J].
GRASSBERGER, P .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) :13-23
[6]  
GRASSBERGER P, 1995, U WUPPERTAL PREPRINT
[7]  
JONES PS, 1983, DIFFERENTIAL EQUATIO
[8]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[9]   ALGEBRAIC PROPERTIES OF CELLULAR AUTOMATA [J].
MARTIN, O ;
ODLYZKO, AM ;
WOLFRAM, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (02) :219-258
[10]  
MOLLISON D, 1995, EPIDEMIC MODELS