Integration of GO annotations in Correspondence Analysis: facilitating the interpretation of microarray data

被引:23
作者
Busold, CH
Winter, S
Hauser, N
Bauer, A
Dippon, J
Hoheisel, JD
Fellenberg, K
机构
[1] Deutsch Krebsforschungszentrum, Div Funct Genome Anal, D-69120 Heidelberg, Germany
[2] Univ Stuttgart, Inst Stochast & Anwendungen, D-70569 Stuttgart, Germany
[3] Fraunhofer Inst Grenzflachen & Bioverfahrenstech, Genom Prote Screening, D-70569 Stuttgart, Germany
关键词
D O I
10.1093/bioinformatics/bti367
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The functional interpretation of microarray datasets still represents a time-consuming and challenging task. Up to now functional categories that are relevant for one or more experimental context(s) have been commonly extracted from a set of regulated genes and presented in long lists. Results: To facilitate interpretation, we integrated Gene Ontology (GO) annotations into Correspondence Analysis to display genes, experimental conditions and gene-annotations in a single plot. The position of the annotations in these plots can be directly used for the functional interpretation of clusters of genes or experimental conditions without the need for comparing long lists of annotations. Correspondence Analysis is not limited in the number of experimental conditions that can be compared simultaneously, allowing an easy identification of characterizing annotations even in complex experimental settings. Due to the rapidly increasing amount of annotation data available, we apply an annotation filter. Hereby the number of displayed annotations can be significantly reduced to a set of descriptive ones, further enhancing the interpretability of the plot. We validated the method on transcription data from Saccharomyces cerevisiae and human pancreatic adenocarcinomas.
引用
收藏
页码:2424 / 2429
页数:6
相关论文
共 30 条
[1]   FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes [J].
Al-Shahrour, F ;
Díaz-Uriarte, R ;
Dopazo, J .
BIOINFORMATICS, 2004, 20 (04) :578-580
[2]  
Ashburner M, 2001, GENOME RES, V11, P1425
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   GOstat: find statistically overrepresented Gene Ontologies within a group of genes [J].
Beissbarth, T ;
Speed, TP .
BIOINFORMATICS, 2004, 20 (09) :1464-1465
[5]  
Beissbarth T, 2000, BIOINFORMATICS, V16, P1014
[6]   The molecular genetics of hexose transport in yeasts [J].
Boles, E ;
Hollenberg, CP .
FEMS MICROBIOLOGY REVIEWS, 1997, 21 (01) :85-111
[7]  
CHARNOMORDIC B, 2001, STAT COMP STAT GRAPH, V12, P19
[8]   Exploring potential target genes of signaling pathways by predicting conserved transcription factor binding sites [J].
Dieterich, C. ;
Herwig, R. ;
Vingron, M. .
BIOINFORMATICS, 2003, 19 :II50-II56
[9]   Microcystic tubulopapillary carcinoma of the pancreas:: a new tumor entity? [J].
Esposito, I ;
Bauer, A ;
Hoheisel, JD ;
Kleeff, J ;
Friess, H ;
Bergmann, F ;
Rieker, RJ ;
Otto, HF ;
Klöppel, G ;
Penzel, R .
VIRCHOWS ARCHIV, 2004, 444 (05) :447-453
[10]   Microarray data warehouse allowing for inclusion of experiment annotations in statistical analysis [J].
Fellenberg, K ;
Hauser, NC ;
Brors, B ;
Hoheisel, JD ;
Vingron, M .
BIOINFORMATICS, 2002, 18 (03) :423-433