Comparative architecture of transposase and integrase complexes

被引:159
作者
Rice, PA
Baker, TA
机构
[1] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/86166
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transposases and retroviral integrases promote the movement of DNA segments to new locations within and between genomes, These recombinases function as multimeric protein-DNA complexes, Recent success in solving the crystal structure of a Tn5 transposase-DNA complex provides the first detailed structural information about a member of the transposase/integrase superfamily in its active, DNA-bound state. Here, we summarize the reactions catalyzed by transposases and integrases and review the Tn5 transposase-DNA cocrystal structure. The insights gained from the Tn5 structure and other available structures are considered together with biochemical and genetic data to discuss features that are likely to prove common to the catalytic complexes used by members of this important protein family.
引用
收藏
页码:302 / 307
页数:8
相关论文
共 48 条
[1]   The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis [J].
Aldaz, H ;
Schuster, E ;
Baker, TA .
CELL, 1996, 85 (02) :257-269
[2]   HIV-1 integrase: Structural organization, conformational changes, and catalysis [J].
Asante-Appiah, E ;
Skalka, AM .
ADVANCES IN VIRUS RESEARCH, VOL 52, 1999, 52 :351-369
[3]   Hairpin formation in Tn5 transposition [J].
Bhasin, A ;
Goryshin, IY ;
Reznikoff, WS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (52) :37021-37029
[4]   THE 2 SINGLE-STRAND CLEAVAGES AT EACH END OF TN10 OCCUR IN A SPECIFIC ORDER DURING TRANSPOSITION [J].
BOLLAND, S ;
KLECKNER, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7814-7818
[5]   The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site [J].
Bolland, S ;
Kleckner, N .
CELL, 1996, 84 (02) :223-233
[6]   Solution structure of the N-terminal zinc binding domain of HIV-1 integrase [J].
Cai, ML ;
Zheng, RL ;
Caffrey, M ;
Craigie, R ;
Clore, GM ;
Gronenborn, AM .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :567-577
[7]   Ribbons [J].
Carson, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :493-505
[8]   Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding [J].
Chen, JCH ;
Krucinski, J ;
Miercke, LJW ;
Finer-Moore, JS ;
Tang, AH ;
Leavitt, AD ;
Stroud, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8233-8238
[9]   X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293) - An initial glance of the viral DNA binding platform [J].
Chen, ZG ;
Yan, YW ;
Munshi, S ;
Li, Y ;
Zugay-Murphy, J ;
Xu, B ;
Witmer, M ;
Felock, P ;
Wolfe, A ;
Sardana, V ;
Emini, EA ;
Hazuda, D ;
Kuo, LC .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (02) :521-533
[10]   Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase [J].
Clubb, RT ;
Schumacher, S ;
Mizuuchi, K ;
Gronenborn, AM ;
Clore, GM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (01) :19-25