Parabolic SPDEs driven by Poisson white noise

被引:100
作者
Albeverio, S
Wu, JL
Zhang, TS
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] SFB 237, Essen, Germany
[3] SFB 237, Bochum, Germany
[4] SFB 237, Dusseldorf, Germany
[5] HSH, Fac Engn, N-5500 Haugesund, Norway
关键词
parabolic SPDEs; Poisson white noise; stochastic integral equations of jump type; existence and uniqueness;
D O I
10.1016/S0304-4149(97)00112-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Stochastic partial differential equations (SPDEs) of parabolic type driven by (pure) Poisson white noise are investigated in this paper. These equations are interpreted as stochastic integral equations of the jump type involving evolution kernels. Existence and uniqueness of the solution is established. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:21 / 36
页数:16
相关论文
共 11 条
[1]  
[Anonymous], REAL COMPLEX ANAL
[2]   WHITE-NOISE DRIVEN PARABOLIC SPDES WITH MEASURABLE DRIFT [J].
BALLY, V ;
GYONGY, I ;
PARDOUX, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 120 (02) :484-510
[3]  
GYONGY I, WEAK STRONG SOLUTION
[4]  
Ikeda I., 1981, STOCHASTIC DIFFERENT
[5]  
ITO K, 1984, SERIES APPL MATH, V47
[6]  
Jacod J., 2003, LIMIT THEOREMS STOCH
[7]   STOCHASTIC-EVOLUTION EQUATIONS DRIVEN BY NUCLEAR-SPACE-VALUED MARTINGALES [J].
KALLIANPUR, G ;
PEREZABREU, V .
APPLIED MATHEMATICS AND OPTIMIZATION, 1988, 17 (03) :237-272
[8]  
KURTZ TG, 1995, ANN I H POINCARE-PR, V31, P351
[9]   ABSOLUTE CONTINUITY OF THE LAW OF THE SOLUTION OF A PARABOLIC SPDE [J].
PARDOUX, E ;
ZHANG, TS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :447-458
[10]  
Peszat S., 1995, STOCHASTICS STOCHAST, V55, P167