Approximation orders of FSI spaces in L2(Rd)

被引:18
作者
de Boor, C
DeVore, RA
Ron, A
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
approximation order; Strang-Fix conditions; shift-invariant spaces; finitely generated; superfunction;
D O I
10.1007/s003659900081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A second look at the authors' [BDR1], [BDR2] characterization of the approximation order of a Finitely generated Shift-Invariant subspace S(Phi) of L-2(R-d) results in a more explicit formulation entirely in terms of the (Fourier transform of the) generators phi is an element of Phi of the subspace. Further, when the generators satisfy a certain technical condition, then, under the mild assumption that the set of 1-periodizations of the generators is linearly independent, such a space is shown to provide approximation order k if and only if span{phi(.-j) :\j\ < k, phi is an element of Phi} contains a psi (necessarily unique) satisfying D-j<(psi)over cap>(alpha) = delta(j)delta(alpha) for \j\ < k, alpha is an element of 2 pi Z(d). The technical condition is satisfied, e.g., when the generators are O(\.\(-rho)) at infinity for some rho > k + d. In the case of compactly supported generators, this recovers an earlier result of Jia [J1], [J2].
引用
收藏
页码:411 / 427
页数:17
相关论文
共 26 条
[1]  
COHEN A, 1995, UNPUB REGULARITY REF
[2]  
de Boor C., 1993, BOX SPLINES
[3]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[4]   BIVARIATE BOX SPLINES AND SMOOTH PP-FUNCTIONS ON A 3 DIRECTION MESH [J].
DEBOOR, C ;
HOLLIG, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1983, 9 (01) :13-28
[5]   THE STRUCTURE OF FINITELY GENERATED SHIFT-INVARIANT SPACES IN L(2)(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :37-78
[6]   FOURIER-ANALYSIS OF THE APPROXIMATION POWER OF PRINCIPAL SHIFT-INVARIANT SPACES [J].
DEBOOR, C ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (04) :427-462
[7]   CONTROLLED APPROXIMATION AND A CHARACTERIZATION OF THE LOCAL APPROXIMATION ORDER [J].
DEBOOR, C ;
JIA, RQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (04) :547-553
[8]   APPROXIMATION ORDER FROM BIVARIATE C1-CUBICS - A COUNTEREXAMPLE [J].
DEBOOR, C ;
HOLLIG, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (04) :649-655
[9]   Approximation by translates of refinable functions [J].
Heil, C ;
Strang, G ;
Strela, V .
NUMERISCHE MATHEMATIK, 1996, 73 (01) :75-94
[10]  
HOGAN T, 1996, 9604 CMS