Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient

被引:138
作者
Feris, K
Ramsey, P
Frazar, C
Moore, JN
Gannon, JE
Holbert, WE [1 ]
机构
[1] Univ Montana, Div Biol Sci, Microbial Ecol Program, Missoula, MT 59812 USA
[2] Univ Montana, Dept Geol, Missoula, MT 59812 USA
关键词
D O I
10.1128/AEM.69.9.5563-5573.2003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to alpha-, beta-, and gamma-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.
引用
收藏
页码:5563 / 5573
页数:11
相关论文
共 79 条
[1]   Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream [J].
Admiraal, W ;
Blanck, H ;
Buckert-De Jong, M ;
Guasch, H ;
Ivorra, N ;
Lehmann, V ;
Nyström, BAH ;
Paulsson, M ;
Sabater, S .
WATER RESEARCH, 1999, 33 (09) :1989-1996
[2]  
Bååth E, 1998, APPL ENVIRON MICROB, V64, P238
[3]   Acetate retention and metabolism in the hyporheic zone of a mountain stream [J].
Baker, MA ;
Dahm, CN ;
Valett, HM .
LIMNOLOGY AND OCEANOGRAPHY, 1999, 44 (06) :1530-1539
[4]   HYPORHEIC BIOFILMS - A POTENTIAL FOOD SOURCE FOR INTERSTITIAL ANIMALS [J].
BARLOCHER, F ;
MURDOCH, JH .
HYDROBIOLOGIA, 1989, 184 (1-2) :61-67
[5]   Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream [J].
Battin, TJ ;
Wille, A ;
Sattler, B ;
Psenner, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (02) :799-807
[6]  
BOCKELMANN DBU, 2001, THESIS U BERLIN BERL
[7]   Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems [J].
Bond, PL ;
Druschel, GK ;
Banfield, JF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (11) :4962-+
[8]   Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site [J].
Bond, PL ;
Smriga, SP ;
Banfield, JF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (09) :3842-3849
[9]   The functional significance of the hyporheic zone in streams and rivers [J].
Boulton, AJ ;
Findlay, S ;
Marmonier, P ;
Stanley, EH ;
Valett, HM .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1998, 29 :59-81
[10]  
BROOKES PC, 1986, C P FEMS S, P327