Sparse solution in training artificial neural networks

被引:13
作者
Giustolisi, O [1 ]
机构
[1] Univ Bari, Engn Fac Taranto, I-74100 Taranto, Italy
关键词
artificial neural networks; multilayer perceptrons; support vector machines; radial-basis function regularised networks;
D O I
10.1016/j.neucom.2003.09.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multilayer perceptrons (MLPs) for non-linear regression within a common framework with support vector machines (SVMs) and radial basis function regularised networks for non-linear regression are presented. The aim is taking advantage of the SVMs training paradigm to overcome the curse of dimensionality and too strict hypothesis on the statistics of errors in traditional MLPs for non-linear regression. In this context, an alternative strategy to quadratic programming, based on 1-norm minimisation to avoid computational problems of SVMs, is proposed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 304
页数:20
相关论文
共 33 条
[1]  
ABRAHART RJ, 2000, J HYROINF, V2, P103
[2]   EFFICIENT ALGORITHM FOR DISCRETE L1 LINEAR-APPROXIMATION WITH LINEAR CONSTRAINTS [J].
BARRODALE, I ;
ROBERTS, FDK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (03) :603-611
[3]  
Bennett KP, 1999, ADVANCES IN KERNEL METHODS, P307
[4]  
BILLINGS S, 1992, INT J CONTROL, V51, P1191
[5]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[6]  
Fletcher R., 2000, Practical Methods of Optimization, DOI [10.1002/9781118723203, DOI 10.1002/9781118723203]
[7]  
GIUSTOLISI O, 2002, P 5 C HYDR LOND UK, V2, P1465
[8]  
GIUSTOLISI O, 2000, J HYDROINFORM, V2, P269, DOI DOI 10.2166/HYDRO.2000.0024
[9]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[10]  
Govindaraju RS, 2000, J HYDROL ENG, V5, P124