NopL, an effector protein of Rhizobium sp NGR234, thwarts activation of plant defense reactions

被引:131
作者
Bartsev, AV
Deakin, WJ
Boukli, NM
McAlvin, CB
Stacey, G
Malnoë, P
Broughton, WJ [1 ]
Staehelin, C
机构
[1] Univ Geneva, Lab Biol Mol Plantes Super Sci 3, CH-1211 Geneva 4, Switzerland
[2] Univ Tennessee, Dept Microbiol, Ctr Legume Res, Knoxville, TN 37996 USA
[3] Fed Agron Res Stn, CH-1260 Nyon, Switzerland
关键词
D O I
10.1104/pp.103.031740
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Bacterial effector proteins delivered into eukaryotic cells via bacterial type III secretion systems are important virulence factors in plant-pathogen interactions. Type III secretion systems have been found in Rhizobium species that form symbiotic, nitrogen-fixing associations with legumes. One such bacterium, Rhizobium sp. NGR234, secretes a number of type III effectors, including nodulation outer protein L (NopL, formerly y4xL). Here, we show that expression of nopL in tobacco (Nicotiana tabacum) prevents full induction of pathogenesis-related (PR) defense proteins. Transgenic tobacco plants that express nopL and were infected with potato virus Y (necrotic strain 605) exhibited only very low levels of chitinase (class I) and beta-1,3-glucanase (classes I and III) proteins. Northern-blot analysis indicated that expression of nopL in plant cells suppresses transcription of PR genes. Treatment with ethylene counteracted the effect of NopL on chitinase (class I). Transgenic Lotus japonicus plants that expressed nopL exhibited delayed development and low chitinase levels. In vitro experiments showed that NopL is a substrate for plant protein kinases. Together, these data suggest that NopL, when delivered into the plant cell, modulates the activity of signal transduction pathways that culminate in activation of PR proteins.
引用
收藏
页码:871 / 879
页数:9
相关论文
共 60 条
[1]  
AUSUBEL FM, 1990, CURRENT PROTOCOLS S9, V1
[2]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[3]   Purification and phosphorylation of the effector protein NopL from Rhizobium sp NGR234 [J].
Bartsev, AV ;
Boukli, NM ;
Deakin, WJ ;
Staehelin, C ;
Broughton, WJ .
FEBS LETTERS, 2003, 554 (03) :271-274
[4]   PHYSIOLOGICAL COMPENSATION IN ANTISENSE TRANSFORMANTS - SPECIFIC INDUCTION OF AN ERSATZ GLUCAN ENDO-1,3-BETA-GLUCOSIDASE IN PLANTS INFECTED WITH NECROTIZING VIRUSES [J].
BEFFA, RS ;
NEUHAUS, JM ;
MEINS, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :8792-8796
[5]   CHITINASE IN BEAN-LEAVES - INDUCTION BY ETHYLENE, PURIFICATION, PROPERTIES, AND POSSIBLE FUNCTION [J].
BOLLER, T ;
GEHRI, A ;
MAUCH, F ;
VOGELI, U .
PLANTA, 1983, 157 (01) :22-31
[6]   Keys to symbiotic harmony [J].
Broughton, WJ ;
Jabbouri, S ;
Perret, X .
JOURNAL OF BACTERIOLOGY, 2000, 182 (20) :5641-5652
[7]   CONTROL OF LEGHAEMOGLOBIN SYNTHESIS IN SNAKE BEANS [J].
BROUGHTON, WJ ;
DILWORTH, MJ .
BIOCHEMICAL JOURNAL, 1971, 125 (04) :1075-+
[8]   IDENTIFICATION OF RHIZOBIUM PLASMID SEQUENCES INVOLVED IN RECOGNITION OF PSOPHOCARPUS, VIGNA, AND OTHER LEGUMES [J].
BROUGHTON, WJ ;
WONG, CH ;
LEWIN, A ;
SAMREY, U ;
MYINT, H ;
MEYER, H ;
DOWLING, DN ;
SIMON, R .
JOURNAL OF CELL BIOLOGY, 1986, 102 (04) :1173-1182
[9]   Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells [J].
Casper-Lindley, C ;
Dahlbeck, D ;
Clark, ET ;
Staskawicz, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :8336-8341
[10]   PLANT GENE-EXPRESSION IN RESPONSE TO PATHOGENS [J].
COLLINGE, DB ;
SLUSARENKO, AJ .
PLANT MOLECULAR BIOLOGY, 1987, 9 (04) :389-410