Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing

被引:72
作者
Ambikapathi, ArulMurugan [1 ]
Chan, Tsung-Han [1 ]
Ma, Wing-Kin [2 ]
Chi, Chong-Yung [1 ,3 ]
机构
[1] Natl Tsing Hua Univ, Inst Commun Engn, Hsinchu 30013, Taiwan
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
[3] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2011年 / 49卷 / 11期
关键词
Abundance map; chance-constrained optimization; convex analysis; endmember signature; hyperspectral imaging (HI); hyperspectral unmixing (HU); sequential quadratic programming (SQP); NONNEGATIVE MATRIX FACTORIZATION; ENDMEMBER EXTRACTION;
D O I
10.1109/TGRS.2011.2151197
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the hyperspectral data should yield high fidelity estimates of the endmember signatures associated with the data cloud. Recently, we have developed a minimum-volume enclosing simplex (MVES) algorithm based on Craig's criterion and validated that the MVES algorithm is very useful to unmix highly mixed hyperspectral data. However, the presence of noise in the observations expands the actual data cloud, and as a consequence, the endmember estimates obtained by applying Craig-criterion-based algorithms to the noisy data may no longer be in close proximity to the true endmember signatures. In this paper, we propose a robust MVES (RMVES) algorithm that accounts for the noise effects in the observations by employing chance constraints. These chance constraints in turn control the volume of the resulting simplex. Under the Gaussian noise assumption, the chance-constrained MVES problem can be formulated into a deterministic nonlinear program. The problem can then be conveniently handled by alternating optimization, in which each subproblem involved is handled by using sequential quadratic programming solvers. The proposed RMVES is compared with several existing benchmark algorithms, including its predecessor, the MVES algorithm. Monte Carlo simulations and real hyperspectral data experiments are presented to demonstrate the efficacy of the proposed RMVES algorithm.
引用
收藏
页码:4194 / 4209
页数:16
相关论文
共 48 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Ambikapathi A., 2010, Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, P1
[3]   A ROBUST MINIMUM VOLUME ENCLOSING SIMPLEX ALGORITHM FOR HYPERSPECTRAL UNMIXING [J].
Ambikapathi, ArulMurugan ;
Chan, Tsung-Han ;
Ma, Wing-Kin ;
Chi, Chong-Yung .
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, :1202-1205
[4]  
[Anonymous], CONVEX OPTIMIZATION
[5]  
[Anonymous], 2008, MATLAB OPTIMIZATION
[6]  
[Anonymous], 2010, Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, DOI DOI 10.1109/WHISPERS.2010.5594929
[7]  
[Anonymous], 1993, B AM ASTRON SOC
[8]  
[Anonymous], 2010, CVX: Matlab software for disciplined convex programming (web page and software)
[9]  
[Anonymous], 2006, Linear Algebra and Its Applications
[10]  
[Anonymous], AVIRIS DAT PROD ONL