Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate

被引:255
作者
Erlandsson, Martin [1 ]
Buffam, Ishi [2 ]
Folster, Jens [1 ]
Laudon, Hjalmar [3 ]
Temnerud, Johan [1 ]
Weyhenmeyer, Gesa A. [1 ]
Bishop, Kevin [1 ]
机构
[1] Swedish Univ Agr Sci, Dept Environm Assessment, S-75007 Uppsala, Sweden
[2] Swedish Univ Agr Sci, Dept Forest Ecol, S-90183 Umea, Sweden
[3] Umea Univ, Dept Ecol & Environm Sci, S-90187 Umea, Sweden
关键词
climate; DOC; hydrology; recovery from acidification; sulphate; time series; water quality;
D O I
10.1111/j.1365-2486.2008.01551.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Increasing concentrations of organic matter ( OM) in surface waters have been noted over large parts of the boreal/nemoral zone in Europe and North America. This has raised questions about the causes and the likelihood of further increases. A number of drivers have been proposed, including temperature, hydrology, as well as SO42 - and Cl (-) deposition. The data reported so far, however, have been insufficient to define the relative importance of different drivers in landscapes where they interact. Thirty-five years of monthly measurements of absorbance and chemical oxygen demand ( COD), two common proxies for OM, from 28 large Scandinavian catchments provide an unprecedented opportunity to resolve the importance of hypothesized drivers. For 21 of the catchments, there are 18 years of total organic carbon (TOC) measurements as well. Despite the heterogeneity of the catchments with regards to climate, size and land use, there is a high degree of synchronicity in OM across the entire region. Rivers go from widespread trends of decreasing OM to increasing trends and back again three times in the 35-year record. This synchronicity in decadal scale oscillations and long-term trends suggest a common set of dominant OM drivers in these landscapes. Here, we use regression models to test the importance of different potential drivers. We show that flow and SO42 - together can predict most of the interannual variability in OM proxies, up to 88% for absorbance, up to 78% for COD. Two other candidate drivers, air temperature and Cl (-) , add little explanatory value. Declines in anthropogenic SO42 - since the mid-1970s are thus related to the observed OM increases in Scandinavia, but, in contrast to many recent studies, flow emerges as an even more important driver of OM variability. Stabilizing SO42 - levels also mean that hydrology is likely to be the major driver of future variability and trends in OM.
引用
收藏
页码:1191 / 1198
页数:8
相关论文
共 38 条
[1]   Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils [J].
Clark, JM ;
Chapman, PJ ;
Adamson, JK ;
Lane, SN .
GLOBAL CHANGE BIOLOGY, 2005, 11 (05) :791-809
[2]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[3]   NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration processes [J].
Eikebrokk, B ;
Vogt, RD ;
Liltved, H .
NATURAL ORGANIC MATERIAL RESEARCH: INNOVATIONS AND APPLICATIONS FOR DRINKING WATER, 2004, 4 (04) :47-54
[4]   Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts [J].
Evans, CD ;
Monteith, DT ;
Cooper, DM .
ENVIRONMENTAL POLLUTION, 2005, 137 (01) :55-71
[5]   Alternative explanations for rising dissolved organic carbon export from organic soils [J].
Evans, Christopher D. ;
Chapman, Pippa J. ;
Clark, Joanna M. ;
Monteith, Don T. ;
Cresser, Malcolm S. .
GLOBAL CHANGE BIOLOGY, 2006, 12 (11) :2044-2053
[6]   WILL AN INCREASED GREENHOUSE IMPACT IN FENNOSCANDIA GIVE RISE TO MORE HUMIC AND COLORED LAKES [J].
FORSBERG, C .
HYDROBIOLOGIA, 1992, 229 :51-58
[7]   Export of organic carbon from peat soils [J].
Freeman, C ;
Evans, CD ;
Monteith, DT ;
Reynolds, B ;
Fenner, N .
NATURE, 2001, 412 (6849) :785-785
[8]   Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels [J].
Freeman, C ;
Fenner, N ;
Ostle, NJ ;
Kang, H ;
Dowrick, DJ ;
Reynolds, B ;
Lock, MA ;
Sleep, D ;
Hughes, S ;
Hudson, J .
NATURE, 2004, 430 (6996) :195-198
[9]   The merits of the high-temperature combustion method for determining the amount of natural organic carbon in surface freshwater samples [J].
Gadmar, TC ;
Vogt, RD ;
Osterhus, B .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2002, 82 (07) :451-461
[10]   The chemistry of streams in southwestern and central Nova Scotia, with particular reference to catchment vegetation and the influence of dissolved organic carbon primarily from wetlands [J].
Gorham, E ;
Underwood, JK ;
Janssens, JA ;
Freedman, B ;
Maass, W ;
Waller, DH ;
Ogden, JG .
WETLANDS, 1998, 18 (01) :115-132