Plant invasion alters nitrogen cycling by modifying the soil nitrifying community

被引:397
作者
Hawkes, CV [1 ]
Wren, IF [1 ]
Herman, DJ [1 ]
Firestone, MK [1 ]
机构
[1] Univ Calif Berkeley, Dept Environm Studies Policy & Management, Div Ecosyst Sci, Berkeley, CA 94720 USA
关键词
ammonia-oxidizing bacteria; annual grass invasion; Avena barbata; Bromus hordeaceus; gross mineralization; gross nitrification; Lupinus bicolor; Nassella pulchra;
D O I
10.1111/j.1461-0248.2005.00802.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Plant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling. To examine this possible link, monocultures and mixtures of exotic and native species were maintained for 4 years in a California grassland. Gross rates of nitrogen (N) mineralization and nitrification were quantified with N-15 pool dilution and soil microbial communities were characterized with DNA-based methods. Exotic grasses doubled gross nitrification rates, in part by increasing the abundance and changing the composition of ammonia-oxidizing bacteria in soil. These changes may translate into altered ecosystem N budgets after invasion. Altered soil microbial communities and their resulting effects on ecosystem processes may be an invisible legacy of exotic plant invasions.
引用
收藏
页码:976 / 985
页数:10
相关论文
共 60 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures [J].
Avrhami, S ;
Conrad, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :6152-6164
[3]  
Balser TC, 2001, FUNCTIONAL CONSEQUEN
[4]  
Belnap J, 2003, BIOSCIENCE, V53, P739, DOI 10.1641/0006-3568(2003)053[0739:BIMTEF]2.0.CO
[5]  
2
[6]   POPULATION ECOLOGY OF NITRIFYING BACTERIA [J].
BELSER, LW .
ANNUAL REVIEW OF MICROBIOLOGY, 1979, 33 :309-333
[7]   CHLOROFORM FUMIGATION AND THE RELEASE OF SOIL-NITROGEN - A RAPID DIRECT EXTRACTION METHOD TO MEASURE MICROBIAL BIOMASS NITROGEN IN SOIL [J].
BROOKES, PC ;
LANDMAN, A ;
PRUDEN, G ;
JENKINSON, DS .
SOIL BIOLOGY & BIOCHEMISTRY, 1985, 17 (06) :837-842
[8]   DIFFUSION METHOD TO PREPARE SOIL EXTRACTS FOR AUTOMATED N-15 ANALYSIS [J].
BROOKS, PD ;
STARK, JM ;
MCINTEER, BB ;
PRESTON, T .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1989, 53 (06) :1707-1711
[9]  
Bruns MA, 1999, APPL ENVIRON MICROB, V65, P2994
[10]   ALKALINE PERSULFATE OXIDATION FOR DETERMINING TOTAL NITROGEN IN MICROBIAL BIOMASS EXTRACTS [J].
CABRERA, ML ;
BEARE, MH .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (04) :1007-1012