Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana

被引:261
作者
Cheng, XF [1 ]
Wang, ZY [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA
关键词
CONSTANS-LIKE gene; Arabidopsis thaliana; flowering time; floral repressor; FLOWERING LOCUS T gene;
D O I
10.1111/j.1365-313X.2005.02491.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
CONSTANS (CO) is an important floral regulator in the photoperiod pathway, integrating the circadian clock and light signal into a control for flowering time. It is known that CO promotes flowering in Arabidopsis under long-day conditions. CONSTANS-LIKE 9 (COL9) is a member of the CONSTANS-LIKE gene family, encoding a nuclear protein. The expression of COL9 is regulated by the circadian clock in the photoperiod pathway and is detected in various organs. Unexpectedly, overexpression of COL9 in transgenic Arabidopsis resulted in delayed flowering, while co-suppression lines and a transferred DNA (T-DNA) knockout line showed earlier flowering under long-day conditions. Overexpression of COL9 did not enhance the late-flowering phenotype in a co mutant background. Double overexpressors produced by overexpression of CO in COL9 transgenic lines showed an early flowering phenotype similar to single CO overexpressors. The pattern of oscillation of a number of circadian-associated genes remained unchanged in the COL9 transgenic lines. Compared with wild-type plants, the abundance of CO and FLOWERING LOCUS T (FT) mRNA was reduced in the COL9 overexpression lines. Our results indicate that COL9 is involved in regulation of flowering time by repressing the expression of CO, concomitantly reducing the expression of FT and delaying floral transition.
引用
收藏
页码:758 / 768
页数:11
相关论文
共 38 条
[1]  
CHEN H, 1994, BIOTECHNIQUES, V16, P664
[2]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[3]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[4]   GIGANTEA:: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains [J].
Fowler, S ;
Lee, K ;
Onouchi, H ;
Samach, A ;
Richardson, K ;
Coupland, G ;
Putterill, J .
EMBO JOURNAL, 1999, 18 (17) :4679-4688
[5]   The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis [J].
Griffiths, S ;
Dunford, RP ;
Coupland, G ;
Laurie, DA .
PLANT PHYSIOLOGY, 2003, 131 (04) :1855-1867
[6]   Orchestrated transcription of key pathways in Arabidopsis by the circadian clock [J].
Harmer, SL ;
Hogenesch, LB ;
Straume, M ;
Chang, HS ;
Han, B ;
Zhu, T ;
Wang, X ;
Kreps, JA ;
Kay, SA .
SCIENCE, 2000, 290 (5499) :2110-2113
[7]   Adaptation of photoperiodic control pathways produces short-day flowering in rice [J].
Hayama, R ;
Yokoi, S ;
Tamaki, S ;
Yano, M ;
Shimamoto, K .
NATURE, 2003, 422 (6933) :719-722
[8]   Shedding light on the circadian clock and the photoperiodic control of flowering [J].
Hayama, R ;
Coupland, G .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (01) :13-19
[9]   Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs [J].
Hepworth, SR ;
Valverde, F ;
Ravenscroft, D ;
Mouradov, A ;
Coupland, G .
EMBO JOURNAL, 2002, 21 (16) :4327-4337
[10]   EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis [J].
Hicks, KA ;
Albertson, TM ;
Wagner, DR .
PLANT CELL, 2001, 13 (06) :1281-1292