Hydrogen storage in nanostructured carbons by spillover: Bridge-building enhancement

被引:283
作者
Lachawiec, AJ [1 ]
Qi, GS [1 ]
Yang, RT [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/la051659r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydrogen storage capacity in nanostructured carbon materials can be increased by atomic hydrogen spillover from a supported catalyst. A simple and effective technique was developed to build carbon bridges that serve to improve contact between a spillover source and a secondary receptor. In this work, a supported catalyst (Pd-C) served as the source of hydrogen atoms via dissociation and primary spillover and AX-21 or single-walled carbon nanotubes (SWNTs) were secondary spillover receptors. By carbonizing a bridge-forming precursor in the presence of the components, the hydrogen adsorption amount was increased by a factor of 2.9 for the AX-21 receptor and 1.6 for the SWNT receptor at 298 K and 100 kPa. Similar results were obtained at 10 MPa, indicating that the enhancement factor is a weak function of pressure. The AX-21 receptor with carbon bridges had the highest absolute capacity of 1.8 wt % at 298 K and 10 MPa. Reversibility was demonstrated through desorption and readsorption at 298 K. The bridge-building process appears to be receptor specific, and optimization may yield even greater enhancement. Using this technique, enhancements in storage of up to 17-fold on other carbon-based materials have been observed and will be reported elsewhere shortly.
引用
收藏
页码:11418 / 11424
页数:7
相关论文
共 43 条
[1]   Hydrogen desorption and adsorption measurements on graphite nanofibers [J].
Ahn, CC ;
Ye, Y ;
Ratnakumar, BV ;
Witham, C ;
Bowman, RC ;
Fultz, B .
APPLIED PHYSICS LETTERS, 1998, 73 (23) :3378-3380
[2]   Mechanism of hydrogen spillover over carbon supported metal catalysts [J].
Badenes, P ;
Daza, L ;
Rodriguez-Ramos, I ;
Guerrero-Ruiz, A .
SPILLOVER AND MIGRATION OF SURFACE SPECIES ON CATALYSTS, 1997, 112 :241-250
[3]   HYDROGEN-OXYGEN TITRATION METHOD FOR MEASUREMENT OF SUPPORTED PLATINUM SURFACE AREAS [J].
BENSON, JE ;
BOUDART, M .
JOURNAL OF CATALYSIS, 1965, 4 (06) :704-&
[4]   ON SLOW UPTAKE OF HYDROGEN BY PLATINIZED CARBON [J].
BOUDART, M ;
ALDAG, AW ;
VANNICE, MA .
JOURNAL OF CATALYSIS, 1970, 18 (01) :46-&
[5]   ADLINEATION PORTHOLES SPILLOVER [J].
BOUDART, M ;
VANNICE, MA ;
BENSON, JE .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-FRANKFURT, 1969, 64 (1-4) :171-&
[6]   Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible reaction mechanism [J].
Browning, DJ ;
Gerrard, ML ;
Lakeman, JB ;
Mellor, IM ;
Mortimer, RJ ;
Turpin, MC .
NANO LETTERS, 2002, 2 (03) :201-205
[7]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[8]   LOW-PRESSURE ADSORPTION STORAGE OF HYDROGEN [J].
CHAHINE, R ;
BOSE, TK .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1994, 19 (02) :161-164
[9]   Hydrogen storage in graphite nanofibers [J].
Chambers, A ;
Park, C ;
Baker, RTK ;
Rodriguez, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22) :4253-4256
[10]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93