The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures

被引:21
作者
He, Yuping [1 ,2 ]
Fan, Jianguo [1 ,2 ,3 ]
Zhao, Yiping [1 ,2 ]
机构
[1] Univ Georgia, Dept Phys, Nanoscale Sci & Engn Ctr, Athens, GA 30602 USA
[2] Univ Georgia, Dept Astron, Nanoscale Sci & Engn Ctr, Athens, GA 30602 USA
[3] Univ Georgia, Ctr Adv Ultrastruct Res, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Vanadium; Magnesium nanostructures; Hydrogen storage; Contact area; Porosity; TRANSITION-METALS; PARTICLE-SIZE; HYDRIDE; SORPTION;
D O I
10.1016/j.ijhydene.2010.02.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using a glancing angle (co)deposition technique, similar to 4.6 at.% V has been coated on the surface of individual Mg nanoblades and doped into Mg nanostructures fabricated at different deposition angles. The hydrogen storage properties of the formed V-decorated and V-doped Mg nanostructures depend strongly on how the nanocatalyst V is surrounded by the host Mg. The V-doped Mg sample has lower activation energies for hydrogen absorption (E-a(a) =35.3 +/- 0.9 kJ/molH(2)) and hydrogen desorption (E-a(d) = 38.9 +/- 0.3 kJ/mol H-2) than the V-decorated Mg sample when deposited at the same deposition angle of theta = 70 degrees. The activation energies of the doped samples increase gradually with the decrease of the theta angle. We also find that the porosity of the Mg nanostructures plays a secondary role. A phenomenological model based on a heterogeneous reaction is proposed to explain the different hydrogen desorption activation energies obtained for different V-Mg nanostructured samples. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4162 / 4170
页数:9
相关论文
共 35 条
[1]   Hydrogen absorption in magnesium based crystalline thin films [J].
Akyildiz, Hasan ;
Ozenbas, Macit ;
Ozturk, Tayfur .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (10) :1379-1383
[2]   Hydrogen kinetics in magnesium hydride: On different catalytic effects of niobium [J].
Bazzanella, N. ;
Checchetto, R. ;
Miotello, A. ;
Sada, C. ;
Mazzoldi, P. ;
Mengucci, P. .
APPLIED PHYSICS LETTERS, 2006, 89 (01)
[3]   Synthesis of magnesium and titanium hydride via reactive mechanical alloying -: Influence of 3d-metal addition on MgH2 synthesize [J].
Bobet, JL ;
Even, C ;
Nakamura, Y ;
Akiba, E ;
Darriet, B .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 298 (1-2) :279-284
[4]   HYDRIDES FORMED FROM INTERMETALLIC COMPOUNDS OF 2 TRANSITION-METALS - A SPECIAL-CLASS OF TERNARY ALLOYS [J].
BUSCHOW, KHJ ;
BOUTEN, PCP ;
MIEDEMA, AR .
REPORTS ON PROGRESS IN PHYSICS, 1982, 45 (09) :937-1039
[5]   An overview of advanced materials for hydrogen storage [J].
David, E .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 162 :169-177
[6]   Hydrogen storage in magnesium-based hydrides and hydride composites [J].
Dornheim, M. ;
Doppiu, S. ;
Barkhordarian, G. ;
Boesenberg, U. ;
Klassen, T. ;
Gutfleisch, O. ;
Bormann, R. .
SCRIPTA MATERIALIA, 2007, 56 (10) :841-846
[7]   The role of Ti as a catalyst for the dissociation of hydrogen on a Mg(0001) surface [J].
Du, AJ ;
Smith, SC ;
Yao, XD ;
Lu, GQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (38) :18037-18041
[8]   Particle size and catalytic effect on the dehydriding of MgH2 [J].
Fátay, D ;
Révész, A ;
Spassov, T .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 399 (1-2) :237-241
[9]  
GRIESSEN R, 1988, TOP APPL PHYS, V63, P219
[10]   SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5 [J].
Hanada, Nobuko ;
Hirotoshi, Enoki ;
Ichikawa, Takayuki ;
Akiba, Etsuo ;
Fujii, Hironobu .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 450 (1-2) :395-399