A CBP binding transcriptional repressor produced by the PS1/∈-cleavage of N-cadherin is inhibited by PS1FAD mutations

被引:388
作者
Marambaud, P
Wen, PH
Dutt, A
Shioi, J
Takashima, A
Siman, R
Robakis, NK [1 ]
机构
[1] Mt Sinai Med Ctr, Sch Med, Dept Psychiat, New York, NY 10029 USA
[2] Inst Phys & Chem Res, Lab Alzheimers Dis, Wako, Saitama 3510198, Japan
[3] Univ Penn, Sch Med, Dept Pharmacol, Philadelphia, PA 19104 USA
[4] Mt Sinai Med Ctr, Sch Med, Fishberg Res Ctr Neurobiol, New York, NY 10029 USA
关键词
D O I
10.1016/S0092-8674(03)00651-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Presenilin1 (PS1), a protein implicated in Alzheimer's disease (AD), forms complexes with N-cadherin, a transmembrane protein with important neuronal and synaptic functions. Here, we show that a PS1-dependent T-secretase protease activity promotes an epsilon-like cleavage of N-cadherin to produce its intracellular domain peptide, N-Cad/CTF2. NMDA receptor agonists stimulate N-Cad/CTF2 production suggesting that this receptor regulates the epsilon-cleavage of N-cadherin. N-Cad/ CTF2 binds the transcription factor CBP and promotes its proteasomal degradation, inhibiting CRE-dependent transactivation. Thus, the PS1-dependent epsilon-cleavage product N-Cad/CTF2 functions as a potent repressor of CBP/CREB-mediated transcription. Importantly, PS1 mutations associated with familial AD (FAD) and a gamma-secretase dominant-negative mutation inhibit N-Cad/CTF2 production and upregulate CREB-mediated transcription indicating that FAD mutations cause a gain of transcriptional function by inhibiting production of transcriptional repressor N-Cad/CTF2. These data raise the possibility that FAD mutation-induced transcriptional abnormalities maybe causally related to the dementia associated with FAD.
引用
收藏
页码:635 / 645
页数:11
相关论文
共 45 条
[1]   A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos [J].
Ahn, S ;
Olive, M ;
Aggarwal, S ;
Krylov, D ;
Ginty, DD ;
Vinson, C .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (02) :967-977
[2]   A presenilin 1 mutation associated with familial frontotemporal dementia inhibits γ-secretase cleavage of APP and notch [J].
Amtul, Z ;
Lewis, PA ;
Piper, S ;
Crook, R ;
Baker, M ;
Findlay, K ;
Singleton, A ;
Hogg, M ;
Younkin, L ;
Younkin, SG ;
Hardy, J ;
Hutton, M ;
Boeve, BF ;
Tang-Wai, D ;
Golde, TE .
NEUROBIOLOGY OF DISEASE, 2002, 9 (02) :269-273
[3]   INCREASED IMMUNOREACTIVITY FOR JUN-RELATED AND FOS-RELATED PROTEINS IN ALZHEIMERS-DISEASE - ASSOCIATION WITH PATHOLOGY [J].
ANDERSON, AJ ;
CUMMINGS, BJ ;
COTMAN, CW .
EXPERIMENTAL NEUROLOGY, 1994, 125 (02) :286-295
[4]  
[Anonymous], 1991, CULTURING NERVE CELL
[5]   ACTIVATION OF CAMP AND MITOGEN RESPONSIVE GENES RELIES ON A COMMON NUCLEAR FACTOR [J].
ARIAS, J ;
ALBERTS, AS ;
BRINDLE, P ;
CLARET, FX ;
SMEAL, T ;
KARIN, M ;
FERAMISCO, J ;
MONTMINY, M .
NATURE, 1994, 370 (6486) :226-229
[6]   Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin/catenin adhesion complex [J].
Baki, L ;
Marambaud, P ;
Efthimiopoulos, S ;
Georgakopoulos, A ;
Wen, P ;
Cui, W ;
Shioi, J ;
Koo, E ;
Ozawa, M ;
Friedrich, VL ;
Robakis, NK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2381-2386
[7]   GROWTH OF A RAT NEUROBLASTOMA CELL LINE IN SERUM-FREE SUPPLEMENTED MEDIUM [J].
BOTTENSTEIN, JE ;
SATO, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :514-517
[8]   PHOSPHORYLATED CREB BINDS SPECIFICALLY TO THE NUCLEAR-PROTEIN CBP [J].
CHRIVIA, JC ;
KWOK, RPS ;
LAMB, N ;
HAGIWARA, M ;
MONTMINY, MR ;
GOODMAN, RH .
NATURE, 1993, 365 (6449) :855-859
[9]   The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein [J].
Cupers, P ;
Bentahir, M ;
Craessaerts, K ;
Orlans, I ;
Vanderstichele, H ;
Saftig, P ;
De Strooper, B ;
Annaert, W .
JOURNAL OF CELL BIOLOGY, 2001, 154 (04) :731-740
[10]   CREB family transcription factors inhibit neuronal suicide [J].
Dawson, TM ;
Ginty, DD .
NATURE MEDICINE, 2002, 8 (05) :450-451