The method of fundamental solutions for elliptic boundary value problems

被引:854
作者
Fairweather, G
Karageorghis, A
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
elliptic boundary value problems; fundamental solutions; nonlinear least squares; boundary collocation;
D O I
10.1023/A:1018981221740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to describe the development of the method of fundamental solutions (MFS) and related methods over the last three decades. Several applications of MFS-type methods are presented. Techniques by which such methods are extended to certain classes of non-trivial problems and adapted for the solution of inhomogeneous problems are also outlined.
引用
收藏
页码:69 / 95
页数:27
相关论文
共 121 条
[1]  
Aleksidze M.A., 1966, Differ. Equ, V2, P515
[2]  
ALMANSI E, 1997, ANN MAT PUR APPL, V2, P1
[3]  
[Anonymous], 1968, J ENG MECH DIVISION
[4]  
[Anonymous], LECT NOTES STAT
[5]  
[Anonymous], 1980, MINPACK PROJECT
[6]  
[Anonymous], 1988, JAPAN J APPL MATH, DOI DOI 10.1007/BF03167903
[7]  
[Anonymous], 1994, JPN J IND APPL MATH, DOI DOI 10.1007/BF03167213
[8]   THE NUMERICAL EVALUATION OF PARTICULAR SOLUTIONS FOR POISSONS-EQUATION [J].
ATKINSON, KE .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (03) :319-338
[9]  
Banerjee P.K., 1981, BOUNDARY ELEMENT MET
[10]  
BERGER JR, GREENS FUNCTION STEA