The Harrison-Pliska arbitrage pricing theorem under transaction costs

被引:62
作者
Kabanov, YM
Stricker, C
机构
[1] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[2] Russian Acad Sci, Cent Econ & Math Inst, Moscow 117901, Russia
关键词
financial market; contingent claim; transaction cost; arbitrage; hedging; polyhedral cones;
D O I
10.1016/S0304-4068(00)00064-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a simple multi-asset discrete-time model of a currency market with transaction costs assuming the finite number of states of the nature. Defining two kinds of arbitrage opportunities we study necessary and sufficient conditions for the absence of arbitrage. Our main result is a natural extension of the Harrison-Pliska theorem on asset pricing. We prove also a hedging theorem without supplementary hypotheses. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 14 条
[1]  
Dalang R. C., 1990, Stochastics and Stochastics Reports, V29, P185, DOI 10.1080/17442509008833613
[2]  
DELBAEN F, 2001, IN PRESS MATH FINANC
[3]  
Harrison J. M., 1981, Stochastic Processes & their Applications, V11, P215, DOI 10.1016/0304-4149(81)90026-0
[4]  
Jacod J., 1998, Finance Stoch, V2, P259, DOI DOI 10.1007/S007800050040
[5]   MARTINGALES AND ARBITRAGE IN SECURITIES MARKETS WITH TRANSACTION COSTS [J].
JOUINI, E ;
KALLAL, H .
JOURNAL OF ECONOMIC THEORY, 1995, 66 (01) :178-197
[6]   NO-ARBITRAGE AND EQUIVALENT MARTINGALE MEASURES - AN ELEMENTARY PROOF OF THE HARRISON-PLISKA THEOREM [J].
KABANOV, YM ;
KRAMKOV, DO .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1995, 39 (03) :523-527
[7]  
Kabanov YM, 1999, Finance Stochastics, V3, P237
[8]  
KABANOV YM, 2001, UNPUB MATH FINANCE
[9]  
PSHENYCHNYI BN, 1980, CONVEX ANAL EXTREMAL
[10]  
ROCKAFELLAR T., 1970, Convex Analysis