The Visual Object Tracking VOT2015 challenge results

被引:541
作者
Kristan, Matej [1 ]
Matas, Jiri [2 ]
Leonardis, Ales [3 ]
Felsberg, Michael [4 ]
Cehovin, Luka [1 ]
Fernandez, Gustavo [5 ]
Vojir, Tomas [2 ]
Hager, Gustav [4 ]
Nebehay, Georg [5 ]
Pflugfelder, Roman [5 ]
Gupta, Abhinav [6 ]
Bibi, Adel [7 ]
Lukezic, Alan [1 ]
Garcia-Martins, Alvaro [8 ]
Saffari, Amir [10 ]
Petrosino, Alfredo [12 ]
Montero, Andres Solis [13 ]
Varfolomieiev, Anton [14 ]
Baskurt, Atilla [15 ]
Zhao, Baojun [16 ]
Ghanem, Bernard [7 ]
Martinez, Brais [17 ]
Lee, ByeongJu [18 ]
Han, Bohyung [19 ]
Wang, Chaohui [20 ]
Garcia, Christophe [21 ]
Zhang, Chunyuan [22 ,23 ]
Schmid, Cordelia [24 ]
Tao, Dacheng [25 ]
Kim, Daijin [19 ]
Huang, Dafei [22 ,23 ]
Prokhorov, Danil [26 ]
Du, Dawei [27 ,28 ]
Yeung, Dit-Yan [29 ]
Ribeiro, Eraldo [30 ]
Khan, Fahad Shahbaz [4 ]
Porikli, Fatih [31 ,32 ]
Bunyak, Filiz [33 ]
Zhu, Gao [31 ]
Seetharaman, Guna [34 ]
Kieritz, Hilke [36 ]
Yau, Hing Tuen [37 ]
Li, Hongdong [31 ,38 ]
Qi, Honggang [27 ,28 ]
Bischof, Horst [39 ]
Possegger, Horst [39 ]
Lee, Hyemin [19 ]
Nam, Hyeonseob [19 ]
Bogun, Ivan [30 ]
Jeong, Jae-chan [40 ]
机构
[1] Univ Ljubljana, Ljubljana, Slovenia
[2] Czech Tech Univ, Prague, Czech Republic
[3] Univ Birmingham, Birmingham, W Midlands, England
[4] Linkoping Univ, Linkoping, Sweden
[5] Austrian Inst Technol, Seibersdorf, Austria
[6] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[7] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[8] Univ Autonoma Madrid, E-28049 Madrid, Spain
[9] Baidu Corp, Beijing, Peoples R China
[10] Affectv, London, England
[11] TuSimple LLC, San Diego, CA USA
[12] Parthenope Univ Naples, Naples, Italy
[13] Univ Ottawa, Ottawa, ON K1N 6N5, Canada
[14] Natl Tech Univ Ukraine, Kiev, Ukraine
[15] Univ Lyon, Lyon, France
[16] Beijing Inst Technol, Beijing, Peoples R China
[17] Univ Nottingham, Nottingham, England
[18] Seoul Natl Univ, Seoul, South Korea
[19] POSTECH, Pohang, South Korea
[20] Univ Paris Est, Paris, France
[21] LIRIS, Lyon, France
[22] Natl Univ Def Technol, Changsha, Hunan, Peoples R China
[23] Natl Key Lab Parallel & Distributed Proc, Changsha, Hunan, Peoples R China
[24] INRIA Grenoble Rhone Alpes, Grenoble, France
[25] Univ Technol Sydney, Sydney, NSW, Australia
[26] Toyota Res Inst, Toyota, Japan
[27] SUNY Albany, Albany, NY USA
[28] Chinese Acad Sci, SCCE, Beijing, Peoples R China
[29] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China
[30] Florida Inst Technol, Melbourne, FL USA
[31] Australian Natl Univ, Canberra, ACT 0200, Australia
[32] NICTA, Sydney, NSW, Australia
[33] Univ Missouri, Columbia, MO 65211 USA
[34] Naval Res Lab, Washington, DC 20375 USA
[35] Harbin Engn Univ, Harbin, Peoples R China
[36] Fraunhofer IOSB, Karlsruhe, Germany
[37] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[38] ARC Ctr Excellence Robot Vis, Brisbane, Qld, Australia
[39] Graz Univ Technol, Graz, Austria
[40] Elect & Telecommun Res Inst, Daejeon, South Korea
[41] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
[42] CUHK, Hong Kong, Hong Kong, Peoples R China
[43] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[44] Univ Surrey, Guildford GU2 5XH, Surrey, England
[45] Univ Oxford, Oxford OX1 2JD, England
[46] Obvious Engn, London, England
[47] Harbin Inst Technol, Harbin, Peoples R China
来源
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW) | 2015年
关键词
ADAPTIVE MEAN-SHIFT; MOTION; FACE;
D O I
10.1109/ICCVW.2015.79
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website(1).
引用
收藏
页码:564 / 586
页数:23
相关论文
共 85 条
[1]  
[Anonymous], 2014, BRIT MACH VIS C
[2]  
[Anonymous], P ACCV DTCE
[3]  
[Anonymous], 2006, BMVC06
[4]  
[Anonymous], TPAMI
[5]  
[Anonymous], 2011, 16 COMP VIS WINT WOR
[6]  
[Anonymous], WACV 2014 IEEE WINT
[7]  
Asthana A., 2014, COMPUTER VISION PATT
[8]  
Atkinson R. C., 1968, PSYCHOL LEARN MOTIV, V2, P89
[9]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[10]  
Bao CL, 2012, PROC CVPR IEEE, P1830, DOI 10.1109/CVPR.2012.6247881